{"title":"摘要:从未配对的单细胞数据中通过循环一致训练进行准确的跨模态翻译。","authors":"Siwei Xu, Junhao Liu, Jing Zhang","doi":"10.1145/3627673.3679576","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell sequencing technologies have revolutionized genomics by enabling the simultaneous profiling of various molecular modalities within individual cells. Their integration, especially cross-modality translation, offers deep insights into cellular regulatory mechanisms. Many methods have been developed for cross-modality translation, but their reliance on scarce high-quality co-assay data limits their applicability. Addressing this, we introduce scACT, a deep generative model designed to extract cross-modality biological insights from unpaired single-cell data. scACT tackles three major challenges: aligning unpaired multi-modal data via adversarial training, facilitating cross-modality translation without prior knowledge via cycle-consistent training, and enabling interpretable regulatory interconnections explorations via in-silico perturbations. To test its performance, we applied scACT on diverse single-cell datasets and found it outperformed existing methods in all three tasks. Finally, we have developed scACT as an individual open-source software package to advance single-cell omics data processing and analysis within the research community.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2024 ","pages":"2722-2731"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611688/pdf/","citationCount":"0","resultStr":"{\"title\":\"scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data.\",\"authors\":\"Siwei Xu, Junhao Liu, Jing Zhang\",\"doi\":\"10.1145/3627673.3679576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell sequencing technologies have revolutionized genomics by enabling the simultaneous profiling of various molecular modalities within individual cells. Their integration, especially cross-modality translation, offers deep insights into cellular regulatory mechanisms. Many methods have been developed for cross-modality translation, but their reliance on scarce high-quality co-assay data limits their applicability. Addressing this, we introduce scACT, a deep generative model designed to extract cross-modality biological insights from unpaired single-cell data. scACT tackles three major challenges: aligning unpaired multi-modal data via adversarial training, facilitating cross-modality translation without prior knowledge via cycle-consistent training, and enabling interpretable regulatory interconnections explorations via in-silico perturbations. To test its performance, we applied scACT on diverse single-cell datasets and found it outperformed existing methods in all three tasks. Finally, we have developed scACT as an individual open-source software package to advance single-cell omics data processing and analysis within the research community.</p>\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"2024 \",\"pages\":\"2722-2731\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611688/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627673.3679576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627673.3679576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data.
Single-cell sequencing technologies have revolutionized genomics by enabling the simultaneous profiling of various molecular modalities within individual cells. Their integration, especially cross-modality translation, offers deep insights into cellular regulatory mechanisms. Many methods have been developed for cross-modality translation, but their reliance on scarce high-quality co-assay data limits their applicability. Addressing this, we introduce scACT, a deep generative model designed to extract cross-modality biological insights from unpaired single-cell data. scACT tackles three major challenges: aligning unpaired multi-modal data via adversarial training, facilitating cross-modality translation without prior knowledge via cycle-consistent training, and enabling interpretable regulatory interconnections explorations via in-silico perturbations. To test its performance, we applied scACT on diverse single-cell datasets and found it outperformed existing methods in all three tasks. Finally, we have developed scACT as an individual open-source software package to advance single-cell omics data processing and analysis within the research community.