Daniel Saar, Caroline L E Lennartsson, Philip Weidner, Elke Burgermeister, Birthe B Kragelund
{"title":"肌小管蛋白相关蛋白及其无序c端区域未开发的相互作用潜力。","authors":"Daniel Saar, Caroline L E Lennartsson, Philip Weidner, Elke Burgermeister, Birthe B Kragelund","doi":"10.1002/prot.26774","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Myotubularin Related Proteins and the Untapped Interaction Potential of Their Disordered C-Terminal Regions.\",\"authors\":\"Daniel Saar, Caroline L E Lennartsson, Philip Weidner, Elke Burgermeister, Birthe B Kragelund\",\"doi\":\"10.1002/prot.26774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.26774\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26774","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Myotubularin Related Proteins and the Untapped Interaction Potential of Their Disordered C-Terminal Regions.
Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.