Fudong Shang , Shouguo Tang , Xiaorong Wan , Yingna Li , Lulu Wang
{"title":"BMSMM-Net:基于曼巴和多视角提取的骨转移分割框架。","authors":"Fudong Shang , Shouguo Tang , Xiaorong Wan , Yingna Li , Lulu Wang","doi":"10.1016/j.acra.2024.11.018","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>Metastatic bone tumors significantly reduce patients’ quality of life and expedite cancer spread. Traditional diagnostic methods rely on time-consuming manual annotations by radiologists, which are prone to subjectivity. Employing deep learning for rapid, precise segmentation of bone metastases can greatly improve patient outcomes and survival. However, accurate segmentation remains challenging due to the diverse and complex nature of osteoblastic, osteolytic, or mixed lesions.</div></div><div><h3>Materials and Methods</h3><div>In this study, we presented a novel segmentation framework, termed BMSMM-Net, tailored specifically for the detection of bone metastases. The framework integrates our newly proposed Bottleneck Gating Mamba layer (BGM) into the network backbone, enhancing the long-range dependencies in the depth feature maps. Additionally, we designed a Skip-Mamba (SKM) module on the skip connections to facilitate long-range modeling during multi-scale feature fusion. Furthermore, a Multi-Perspective Extraction (MPE) module was employed in the feature extraction phase, utilizing three different sizes of convolutional kernels to enhance sensitivity to bone metastases.</div></div><div><h3>Results</h3><div>Our framework was evaluated on the BM-Seg dataset through comparative and ablation studies. It achieved F1 scores of 91.07% and 95.17% for segmenting bone metastases and bone regions, respectively, along with mIoU scores of 83.60% and 90.78%, BMSMM-Net provides high-performance segmentation of bone metastases. Additionally, it maintains good computational efficiency compared to existing models.</div></div><div><h3>Conclusion</h3><div>The BMSMM-Net framework, integrating BGM, SKM, and MPE modules, effectively addresses the segmentation challenges of bone metastases. It significantly enhances accuracy, outperforms advanced existing methods, and maintains lower complexity, making it suitable for clinical application.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 3","pages":"Pages 1204-1217"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMSMM-Net: A Bone Metastasis Segmentation Framework Based on Mamba and Multiperspective Extraction\",\"authors\":\"Fudong Shang , Shouguo Tang , Xiaorong Wan , Yingna Li , Lulu Wang\",\"doi\":\"10.1016/j.acra.2024.11.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Rationale and Objectives</h3><div>Metastatic bone tumors significantly reduce patients’ quality of life and expedite cancer spread. Traditional diagnostic methods rely on time-consuming manual annotations by radiologists, which are prone to subjectivity. Employing deep learning for rapid, precise segmentation of bone metastases can greatly improve patient outcomes and survival. However, accurate segmentation remains challenging due to the diverse and complex nature of osteoblastic, osteolytic, or mixed lesions.</div></div><div><h3>Materials and Methods</h3><div>In this study, we presented a novel segmentation framework, termed BMSMM-Net, tailored specifically for the detection of bone metastases. The framework integrates our newly proposed Bottleneck Gating Mamba layer (BGM) into the network backbone, enhancing the long-range dependencies in the depth feature maps. Additionally, we designed a Skip-Mamba (SKM) module on the skip connections to facilitate long-range modeling during multi-scale feature fusion. Furthermore, a Multi-Perspective Extraction (MPE) module was employed in the feature extraction phase, utilizing three different sizes of convolutional kernels to enhance sensitivity to bone metastases.</div></div><div><h3>Results</h3><div>Our framework was evaluated on the BM-Seg dataset through comparative and ablation studies. It achieved F1 scores of 91.07% and 95.17% for segmenting bone metastases and bone regions, respectively, along with mIoU scores of 83.60% and 90.78%, BMSMM-Net provides high-performance segmentation of bone metastases. Additionally, it maintains good computational efficiency compared to existing models.</div></div><div><h3>Conclusion</h3><div>The BMSMM-Net framework, integrating BGM, SKM, and MPE modules, effectively addresses the segmentation challenges of bone metastases. It significantly enhances accuracy, outperforms advanced existing methods, and maintains lower complexity, making it suitable for clinical application.</div></div>\",\"PeriodicalId\":50928,\"journal\":{\"name\":\"Academic Radiology\",\"volume\":\"32 3\",\"pages\":\"Pages 1204-1217\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1076633224008638\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1076633224008638","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
BMSMM-Net: A Bone Metastasis Segmentation Framework Based on Mamba and Multiperspective Extraction
Rationale and Objectives
Metastatic bone tumors significantly reduce patients’ quality of life and expedite cancer spread. Traditional diagnostic methods rely on time-consuming manual annotations by radiologists, which are prone to subjectivity. Employing deep learning for rapid, precise segmentation of bone metastases can greatly improve patient outcomes and survival. However, accurate segmentation remains challenging due to the diverse and complex nature of osteoblastic, osteolytic, or mixed lesions.
Materials and Methods
In this study, we presented a novel segmentation framework, termed BMSMM-Net, tailored specifically for the detection of bone metastases. The framework integrates our newly proposed Bottleneck Gating Mamba layer (BGM) into the network backbone, enhancing the long-range dependencies in the depth feature maps. Additionally, we designed a Skip-Mamba (SKM) module on the skip connections to facilitate long-range modeling during multi-scale feature fusion. Furthermore, a Multi-Perspective Extraction (MPE) module was employed in the feature extraction phase, utilizing three different sizes of convolutional kernels to enhance sensitivity to bone metastases.
Results
Our framework was evaluated on the BM-Seg dataset through comparative and ablation studies. It achieved F1 scores of 91.07% and 95.17% for segmenting bone metastases and bone regions, respectively, along with mIoU scores of 83.60% and 90.78%, BMSMM-Net provides high-performance segmentation of bone metastases. Additionally, it maintains good computational efficiency compared to existing models.
Conclusion
The BMSMM-Net framework, integrating BGM, SKM, and MPE modules, effectively addresses the segmentation challenges of bone metastases. It significantly enhances accuracy, outperforms advanced existing methods, and maintains lower complexity, making it suitable for clinical application.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.