Mahith Madhanakumar, Andres Spicher, Juha Vierinen, Kjellmar Oksavik, Anthea J Coster, Devin Ray Huyghebaert, Carley J Martin, Ingemar Häggström, Larry J Paxton
{"title":"非风暴条件下强烈GNSS振幅和相位闪烁的增长和衰减。","authors":"Mahith Madhanakumar, Andres Spicher, Juha Vierinen, Kjellmar Oksavik, Anthea J Coster, Devin Ray Huyghebaert, Carley J Martin, Ingemar Häggström, Larry J Paxton","doi":"10.1029/2024SW004108","DOIUrl":null,"url":null,"abstract":"<p><p>A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at <math> <mrow><mrow><mo>∼</mo></mrow> </mrow> </math> 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced. Plasma structuring down to Fresnel scales were observed both in the auroral oval as well as inside the polar cap with the associated amplitude scintillation exhibiting similar strengths regardless of whether the density structures were in regions of active auroral dynamics or not. The observations are placed within the context of different sources of free energy, providing insights into the important mechanisms that generate irregularities capable of perturbing GNSS signal properties in the dayside ionosphere. Furthermore, a strong negative excursion in the interplanetary magnetic field (IMF) <math> <mrow> <mrow><msub><mi>B</mi> <mi>y</mi></msub> </mrow> </mrow> </math> component during the northward turning of <math> <mrow> <mrow><msub><mi>B</mi> <mi>z</mi></msub> </mrow> </mrow> </math> led to the transport of a depleted region of plasma density into the post-noon sector that significantly weakened both amplitude and phase scintillation.</p>","PeriodicalId":49487,"journal":{"name":"Space Weather-The International Journal of Research and Applications","volume":"22 12","pages":"e2024SW004108"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607637/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Growth and Decay of Intense GNSS Amplitude and Phase Scintillation During Non-Storm Conditions.\",\"authors\":\"Mahith Madhanakumar, Andres Spicher, Juha Vierinen, Kjellmar Oksavik, Anthea J Coster, Devin Ray Huyghebaert, Carley J Martin, Ingemar Häggström, Larry J Paxton\",\"doi\":\"10.1029/2024SW004108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at <math> <mrow><mrow><mo>∼</mo></mrow> </mrow> </math> 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced. Plasma structuring down to Fresnel scales were observed both in the auroral oval as well as inside the polar cap with the associated amplitude scintillation exhibiting similar strengths regardless of whether the density structures were in regions of active auroral dynamics or not. The observations are placed within the context of different sources of free energy, providing insights into the important mechanisms that generate irregularities capable of perturbing GNSS signal properties in the dayside ionosphere. Furthermore, a strong negative excursion in the interplanetary magnetic field (IMF) <math> <mrow> <mrow><msub><mi>B</mi> <mi>y</mi></msub> </mrow> </mrow> </math> component during the northward turning of <math> <mrow> <mrow><msub><mi>B</mi> <mi>z</mi></msub> </mrow> </mrow> </math> led to the transport of a depleted region of plasma density into the post-noon sector that significantly weakened both amplitude and phase scintillation.</p>\",\"PeriodicalId\":49487,\"journal\":{\"name\":\"Space Weather-The International Journal of Research and Applications\",\"volume\":\"22 12\",\"pages\":\"e2024SW004108\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather-The International Journal of Research and Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024SW004108\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather-The International Journal of Research and Applications","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024SW004108","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
利用多仪器研究了非风暴条件下全球导航卫星系统(GNSS)信号闪烁的时空演变。强烈的振幅和相位闪烁爆发开始发生在~ 9 MLT,并持续了1小时以上,这意味着在正午前扇区同时存在菲涅耳和大尺度不规则性。斯瓦尔巴群岛(ESR)的EISCAT雷达测量结果显示,闪烁增强时,在强焦耳加热/快速流动和软降水区域存在具有显著梯度的致密等离子体结构。无论密度结构是否处于活跃的极光动力学区域,在极光椭圆和极帽内部都观察到菲涅耳尺度的等离子体结构,其相关振幅闪烁表现出相似的强度。这些观测是在不同自由能量来源的背景下进行的,提供了对产生能够干扰白昼侧电离层GNSS信号特性的不规则性的重要机制的见解。此外,行星际磁场(IMF) B y分量在B z向北转向期间的强烈负偏移导致等离子体密度耗尽区域输运到中午后扇区,这大大削弱了振幅和相位闪烁。
The Growth and Decay of Intense GNSS Amplitude and Phase Scintillation During Non-Storm Conditions.
A multi-instrument study is conducted at the dayside polar ionosphere to investigate the spatio-temporal evolution of scintillation in Global Navigation Satellite System (GNSS) signals during non-storm conditions. Bursts of intense amplitude and phase scintillation started to occur at 9 MLT and persisted for more than 1 hour implying the simultaneous existence of Fresnel and large-scale sized irregularities of significant strength in the pre-noon sector. Measurements from the EISCAT radar in Svalbard (ESR) revealed the presence of dense plasma structures with significant gradients in regions of strong Joule heating/fast flows and soft precipitation when scintillation was enhanced. Plasma structuring down to Fresnel scales were observed both in the auroral oval as well as inside the polar cap with the associated amplitude scintillation exhibiting similar strengths regardless of whether the density structures were in regions of active auroral dynamics or not. The observations are placed within the context of different sources of free energy, providing insights into the important mechanisms that generate irregularities capable of perturbing GNSS signal properties in the dayside ionosphere. Furthermore, a strong negative excursion in the interplanetary magnetic field (IMF) component during the northward turning of led to the transport of a depleted region of plasma density into the post-noon sector that significantly weakened both amplitude and phase scintillation.
期刊介绍:
Space Weather: The International Journal of Research and Applications (SWE) is devoted to understanding and forecasting space weather. The scope of understanding and forecasting includes: origins, propagation and interactions of solar-produced processes within geospace; interactions in Earth’s space-atmosphere interface region produced by disturbances from above and below; influences of cosmic rays on humans, hardware, and signals; and comparisons of these types of interactions and influences with the atmospheres of neighboring planets and Earth’s moon. Manuscripts should emphasize impacts on technical systems including telecommunications, transportation, electric power, satellite navigation, avionics/spacecraft design and operations, human spaceflight, and other systems. Manuscripts that describe models or space environment climatology should clearly state how the results can be applied.