[血液学肿瘤中铜凸的研究进展]。

Q3 Medicine
L J Zhou, Y Y Li, L Y Zhang, J Zhang
{"title":"[血液学肿瘤中铜凸的研究进展]。","authors":"L J Zhou, Y Y Li, L Y Zhang, J Zhang","doi":"10.3760/cma.j.cn121090-20240327-00116","DOIUrl":null,"url":null,"abstract":"<p><p>Cuproptosis is a type of independent cell death form, that differs from apoptosis, necroptosis and ferroptosis. It is mediated by Copper (Cu), and mainly affects the lipoylation of proteases in the mitochondrial tricarboxylic acid (TCA) cycle and exhibits cytotoxicity through oligomerization; however, its specific mechanism, signal transduction process and regulation mode are still not clear. Mitochondria affect the sensitivity of cells to copper toxicity and play a central role in the occurrence and development of copper-related death. In recent years, though hematological tumors have achieved better remission through targeted therapy and immunotherapy, they are associated with high recurrence rates and poor prognoses. It is therefore imperative to find better prognostic indicators and new treatment ideas. This paper summarizes the interaction between Cu and mitochondria in the development of tumors and provides ideas for further exploration of the mechanism of copper death and coping with hematological tumors.</p>","PeriodicalId":24016,"journal":{"name":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","volume":"45 10","pages":"965-969"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579755/pdf/","citationCount":"0","resultStr":"{\"title\":\"[The advancement of cuproptosis in hematological tumors].\",\"authors\":\"L J Zhou, Y Y Li, L Y Zhang, J Zhang\",\"doi\":\"10.3760/cma.j.cn121090-20240327-00116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuproptosis is a type of independent cell death form, that differs from apoptosis, necroptosis and ferroptosis. It is mediated by Copper (Cu), and mainly affects the lipoylation of proteases in the mitochondrial tricarboxylic acid (TCA) cycle and exhibits cytotoxicity through oligomerization; however, its specific mechanism, signal transduction process and regulation mode are still not clear. Mitochondria affect the sensitivity of cells to copper toxicity and play a central role in the occurrence and development of copper-related death. In recent years, though hematological tumors have achieved better remission through targeted therapy and immunotherapy, they are associated with high recurrence rates and poor prognoses. It is therefore imperative to find better prognostic indicators and new treatment ideas. This paper summarizes the interaction between Cu and mitochondria in the development of tumors and provides ideas for further exploration of the mechanism of copper death and coping with hematological tumors.</p>\",\"PeriodicalId\":24016,\"journal\":{\"name\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"volume\":\"45 10\",\"pages\":\"965-969\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579755/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn121090-20240327-00116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3760/cma.j.cn121090-20240327-00116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

铜坏死是一种独立的细胞死亡形式,不同于细胞凋亡、坏死下垂和铁下垂。它由铜(Cu)介导,主要影响线粒体三羧酸(TCA)循环中蛋白酶的脂酰化,并通过寡聚化表现出细胞毒性;但其具体机制、信号转导过程和调控方式尚不清楚。线粒体影响细胞对铜毒性的敏感性,并在铜相关死亡的发生和发展中发挥核心作用。近年来,虽然血液肿瘤通过靶向治疗和免疫治疗获得了较好的缓解,但其复发率高,预后差。因此,迫切需要寻找更好的预后指标和新的治疗思路。本文综述了Cu与线粒体在肿瘤发生发展中的相互作用,为进一步探索铜死亡机制和应对血液学肿瘤提供思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[The advancement of cuproptosis in hematological tumors].

Cuproptosis is a type of independent cell death form, that differs from apoptosis, necroptosis and ferroptosis. It is mediated by Copper (Cu), and mainly affects the lipoylation of proteases in the mitochondrial tricarboxylic acid (TCA) cycle and exhibits cytotoxicity through oligomerization; however, its specific mechanism, signal transduction process and regulation mode are still not clear. Mitochondria affect the sensitivity of cells to copper toxicity and play a central role in the occurrence and development of copper-related death. In recent years, though hematological tumors have achieved better remission through targeted therapy and immunotherapy, they are associated with high recurrence rates and poor prognoses. It is therefore imperative to find better prognostic indicators and new treatment ideas. This paper summarizes the interaction between Cu and mitochondria in the development of tumors and provides ideas for further exploration of the mechanism of copper death and coping with hematological tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
100
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信