{"title":"基于自适应信息传递的时间到事件目标的有效风险评估。","authors":"Jie Ding, Jialiang Li, Ping Xie, Xiaoguang Wang","doi":"10.1002/sim.10290","DOIUrl":null,"url":null,"abstract":"<p><p>Using informative sources to enhance statistical analysis in target studies has become an increasingly popular research topic. However, cohorts with time-to-event outcomes have not received sufficient attention, and external studies often encounter issues of incomparability due to population heterogeneity and unmeasured risk factors. To improve individualized risk assessments, we propose a novel methodology that adaptively borrows information from multiple incomparable sources. By extracting aggregate statistics through transitional models applied to both the external sources and the target population, we incorporate this information efficiently using the control variate technique. This approach eliminates the need to load individual-level records from sources directly, resulting in low computational complexity and strong privacy protection. Asymptotically, our estimators of both relative and baseline risks are more efficient than traditional results, and the power of covariate effects testing is much enhanced. We demonstrate the practical performance of our method via extensive simulations and a real case study.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"6026-6041"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Risk Assessment of Time-to-Event Targets With Adaptive Information Transfer.\",\"authors\":\"Jie Ding, Jialiang Li, Ping Xie, Xiaoguang Wang\",\"doi\":\"10.1002/sim.10290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using informative sources to enhance statistical analysis in target studies has become an increasingly popular research topic. However, cohorts with time-to-event outcomes have not received sufficient attention, and external studies often encounter issues of incomparability due to population heterogeneity and unmeasured risk factors. To improve individualized risk assessments, we propose a novel methodology that adaptively borrows information from multiple incomparable sources. By extracting aggregate statistics through transitional models applied to both the external sources and the target population, we incorporate this information efficiently using the control variate technique. This approach eliminates the need to load individual-level records from sources directly, resulting in low computational complexity and strong privacy protection. Asymptotically, our estimators of both relative and baseline risks are more efficient than traditional results, and the power of covariate effects testing is much enhanced. We demonstrate the practical performance of our method via extensive simulations and a real case study.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"6026-6041\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10290\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10290","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Efficient Risk Assessment of Time-to-Event Targets With Adaptive Information Transfer.
Using informative sources to enhance statistical analysis in target studies has become an increasingly popular research topic. However, cohorts with time-to-event outcomes have not received sufficient attention, and external studies often encounter issues of incomparability due to population heterogeneity and unmeasured risk factors. To improve individualized risk assessments, we propose a novel methodology that adaptively borrows information from multiple incomparable sources. By extracting aggregate statistics through transitional models applied to both the external sources and the target population, we incorporate this information efficiently using the control variate technique. This approach eliminates the need to load individual-level records from sources directly, resulting in low computational complexity and strong privacy protection. Asymptotically, our estimators of both relative and baseline risks are more efficient than traditional results, and the power of covariate effects testing is much enhanced. We demonstrate the practical performance of our method via extensive simulations and a real case study.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.