一种通用的免疫组织化学分析仪,用于推广ai驱动的免疫组织化学评估,跨越免疫染色和癌症类型。

IF 6.8 1区 医学 Q1 ONCOLOGY
Biagio Brattoli, Mohammad Mostafavi, Taebum Lee, Wonkyung Jung, Jeongun Ryu, Seonwook Park, Jongchan Park, Sergio Pereira, Seunghwan Shin, Sangjoon Choi, Hyojin Kim, Donggeun Yoo, Siraj M. Ali, Kyunghyun Paeng, Chan-Young Ock, Soo Ick Cho, Seokhwi Kim
{"title":"一种通用的免疫组织化学分析仪,用于推广ai驱动的免疫组织化学评估,跨越免疫染色和癌症类型。","authors":"Biagio Brattoli, Mohammad Mostafavi, Taebum Lee, Wonkyung Jung, Jeongun Ryu, Seonwook Park, Jongchan Park, Sergio Pereira, Seunghwan Shin, Sangjoon Choi, Hyojin Kim, Donggeun Yoo, Siraj M. Ali, Kyunghyun Paeng, Chan-Young Ock, Soo Ick Cho, Seokhwi Kim","doi":"10.1038/s41698-024-00770-z","DOIUrl":null,"url":null,"abstract":"Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-13"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00770-z.pdf","citationCount":"0","resultStr":"{\"title\":\"A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types\",\"authors\":\"Biagio Brattoli, Mohammad Mostafavi, Taebum Lee, Wonkyung Jung, Jeongun Ryu, Seonwook Park, Jongchan Park, Sergio Pereira, Seunghwan Shin, Sangjoon Choi, Hyojin Kim, Donggeun Yoo, Siraj M. Ali, Kyunghyun Paeng, Chan-Young Ock, Soo Ick Cho, Seokhwi Kim\",\"doi\":\"10.1038/s41698-024-00770-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41698-024-00770-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41698-024-00770-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00770-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

免疫组织化学(IHC)是靶向治疗中常见的伴随诊断。然而,由于人工评分的可变性和固有的主观解释,定量免疫组化图像中的蛋白质表达存在重大挑战。深度学习(DL)为解决这些问题提供了一个很有前途的方法,尽管目前的模型需要对每种癌症和IHC类型进行广泛的训练,限制了实际应用。我们开发了一种通用IHC (UIHC)分析仪,这是一种基于dl的工具,可量化不同癌症和IHC类型的蛋白质表达。该多队列训练模型在分析未见IHC图像方面优于传统的单队列模型(Kappa评分0.578对0.509),并且在不同的阳性染色截止值中表现出一致的性能。在一项发现应用中,UIHC模型将更高的肿瘤比例评分分配给MET扩增病例,而不是MET外显子14剪接或其他非小细胞肺癌病例。这个UIHC模型代表了DL的一个新角色,进一步推进了IHC的定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types

A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types
Immunohistochemistry (IHC) is the common companion diagnostics in targeted therapies. However, quantifying protein expressions in IHC images present a significant challenge, due to variability in manual scoring and inherent subjective interpretation. Deep learning (DL) offers a promising approach to address these issues, though current models require extensive training for each cancer and IHC type, limiting the practical application. We developed a Universal IHC (UIHC) analyzer, a DL-based tool that quantifies protein expression across different cancers and IHC types. This multi-cohort trained model outperformed conventional single-cohort models in analyzing unseen IHC images (Kappa score 0.578 vs. up to 0.509) and demonstrated consistent performance across varying positive staining cutoff values. In a discovery application, the UIHC model assigned higher tumor proportion scores to MET amplification cases, but not MET exon 14 splicing or other non-small cell lung cancer cases. This UIHC model represents a novel role for DL that further advances quantitative analysis of IHC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信