用于复杂人类病理的免疫数字双胞胎:应用、限制和挑战。

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Anna Niarakis, Reinhard Laubenbacher, Gary An, Yaron Ilan, Jasmin Fisher, Åsmund Flobak, Kristin Reiche, María Rodríguez Martínez, Liesbet Geris, Luiz Ladeira, Lorenzo Veschini, Michael L Blinov, Francesco Messina, Luis L Fonseca, Sandra Ferreira, Arnau Montagud, Vincent Noël, Malvina Marku, Eirini Tsirvouli, Marcella M Torres, Leonard A Harris, T J Sego, Chase Cockrell, Amanda E Shick, Hasan Balci, Albin Salazar, Kinza Rian, Ahmed Abdelmonem Hemedan, Marina Esteban-Medina, Bernard Staumont, Esteban Hernandez-Vargas, Shiny Martis B, Alejandro Madrid-Valiente, Panagiotis Karampelesis, Luis Sordo Vieira, Pradyumna Harlapur, Alexander Kulesza, Niloofar Nikaein, Winston Garira, Rahuman S Malik Sheriff, Juilee Thakar, Van Du T Tran, Jose Carbonell-Caballero, Soroush Safaei, Alfonso Valencia, Andrei Zinovyev, James A Glazier
{"title":"用于复杂人类病理的免疫数字双胞胎:应用、限制和挑战。","authors":"Anna Niarakis, Reinhard Laubenbacher, Gary An, Yaron Ilan, Jasmin Fisher, Åsmund Flobak, Kristin Reiche, María Rodríguez Martínez, Liesbet Geris, Luiz Ladeira, Lorenzo Veschini, Michael L Blinov, Francesco Messina, Luis L Fonseca, Sandra Ferreira, Arnau Montagud, Vincent Noël, Malvina Marku, Eirini Tsirvouli, Marcella M Torres, Leonard A Harris, T J Sego, Chase Cockrell, Amanda E Shick, Hasan Balci, Albin Salazar, Kinza Rian, Ahmed Abdelmonem Hemedan, Marina Esteban-Medina, Bernard Staumont, Esteban Hernandez-Vargas, Shiny Martis B, Alejandro Madrid-Valiente, Panagiotis Karampelesis, Luis Sordo Vieira, Pradyumna Harlapur, Alexander Kulesza, Niloofar Nikaein, Winston Garira, Rahuman S Malik Sheriff, Juilee Thakar, Van Du T Tran, Jose Carbonell-Caballero, Soroush Safaei, Alfonso Valencia, Andrei Zinovyev, James A Glazier","doi":"10.1038/s41540-024-00450-5","DOIUrl":null,"url":null,"abstract":"<p><p>Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as \"proof of concept\" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"141"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608242/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immune digital twins for complex human pathologies: applications, limitations, and challenges.\",\"authors\":\"Anna Niarakis, Reinhard Laubenbacher, Gary An, Yaron Ilan, Jasmin Fisher, Åsmund Flobak, Kristin Reiche, María Rodríguez Martínez, Liesbet Geris, Luiz Ladeira, Lorenzo Veschini, Michael L Blinov, Francesco Messina, Luis L Fonseca, Sandra Ferreira, Arnau Montagud, Vincent Noël, Malvina Marku, Eirini Tsirvouli, Marcella M Torres, Leonard A Harris, T J Sego, Chase Cockrell, Amanda E Shick, Hasan Balci, Albin Salazar, Kinza Rian, Ahmed Abdelmonem Hemedan, Marina Esteban-Medina, Bernard Staumont, Esteban Hernandez-Vargas, Shiny Martis B, Alejandro Madrid-Valiente, Panagiotis Karampelesis, Luis Sordo Vieira, Pradyumna Harlapur, Alexander Kulesza, Niloofar Nikaein, Winston Garira, Rahuman S Malik Sheriff, Juilee Thakar, Van Du T Tran, Jose Carbonell-Caballero, Soroush Safaei, Alfonso Valencia, Andrei Zinovyev, James A Glazier\",\"doi\":\"10.1038/s41540-024-00450-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as \\\"proof of concept\\\" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"10 1\",\"pages\":\"141\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608242/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00450-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00450-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生代表了精准健康的关键技术。医学数字双胞胎由代表个体患者一段时间内健康状态的计算模型组成,从而实现最佳治疗并预测患者预后。许多健康状况都与免疫系统有关,所以在设计医疗数字双胞胎时,包括免疫系统的关键特征是至关重要的。免疫反应是复杂的,因疾病和患者而异,其建模需要临床、免疫学和计算建模界的集体专业知识。本综述概述了免疫数字双胞胎的初步进展以及促进跨学科社区之间交流的各种举措。我们还概述了免疫数字双胞胎设计的关键方面及其在临床实施的先决条件。我们提出了一些初步用例,可以作为免疫数字技术效用的“概念验证”,重点关注在空间和时间尺度(分钟、天、月、年)上具有非常不同免疫反应的疾病。最后,我们讨论了数字双胞胎在药物发现中的应用,并指出科学界需要共同克服的新挑战,以使免疫数字双胞胎成为现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immune digital twins for complex human pathologies: applications, limitations, and challenges.

Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins. The immune response is complex and varies across diseases and patients, and its modelling requires the collective expertise of the clinical, immunology, and computational modelling communities. This review outlines the initial progress on immune digital twins and the various initiatives to facilitate communication between interdisciplinary communities. We also outline the crucial aspects of an immune digital twin design and the prerequisites for its implementation in the clinic. We propose some initial use cases that could serve as "proof of concept" regarding the utility of immune digital technology, focusing on diseases with a very different immune response across spatial and temporal scales (minutes, days, months, years). Lastly, we discuss the use of digital twins in drug discovery and point out emerging challenges that the scientific community needs to collectively overcome to make immune digital twins a reality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信