胎牛血清硒含量对培养细胞中铁下垂易感性和硒蛋白表达的影响。

IF 1.8 4区 医学 Q4 TOXICOLOGY
Hayato Takashima, Takashi Toyama, Eikan Mishima, Kei Ishida, Yinuo Wang, Atsuya Ichikawa, Junya Ito, Syunsuke Yogiashi, Stephanie Siu, Mayumi Sugawara, Satoru Shiina, Kotoko Arisawa, Marcus Conrad, Yoshiro Saito
{"title":"胎牛血清硒含量对培养细胞中铁下垂易感性和硒蛋白表达的影响。","authors":"Hayato Takashima, Takashi Toyama, Eikan Mishima, Kei Ishida, Yinuo Wang, Atsuya Ichikawa, Junya Ito, Syunsuke Yogiashi, Stephanie Siu, Mayumi Sugawara, Satoru Shiina, Kotoko Arisawa, Marcus Conrad, Yoshiro Saito","doi":"10.2131/jts.49.555","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, a mode of cell death involving iron-dependent lipid peroxidation, has attracted widespread attention in the development of anticancer drugs and toxicological studies as a potential mechanism of chemical-induced cytotoxicity. This process is regulated by several antioxidant enzymes, of which the selenium-containing glutathione peroxidase 4 (GPx4) is the prime regulator. However, accurately and reproducibly evaluating ferroptosis in cultured cells is challenging since numerous experimental factors in in vitro setting can influence the results. In the present study, we found that the expression levels of selenoproteins, such as GPx4 and GPx1, fluctuate across several cell lines depending on the selenium content of different origin of fetal bovine serum (FBS). Cells cultured in FBS containing higher selenium concentrations exhibited elevated GPx4 expression, and were resistant to ferroptosis induced by erastin and RSL3. These findings suggest that the variability of selenium content in different FBS batches can significantly influence the susceptibility of cells to ferroptosis, highlighting the importance of standardizing these factors to enhance the reproducibility of ferroptosis-related experiments.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"49 12","pages":"555-563"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of selenium content in fetal bovine serum on ferroptosis susceptibility and selenoprotein expression in cultured cells.\",\"authors\":\"Hayato Takashima, Takashi Toyama, Eikan Mishima, Kei Ishida, Yinuo Wang, Atsuya Ichikawa, Junya Ito, Syunsuke Yogiashi, Stephanie Siu, Mayumi Sugawara, Satoru Shiina, Kotoko Arisawa, Marcus Conrad, Yoshiro Saito\",\"doi\":\"10.2131/jts.49.555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis, a mode of cell death involving iron-dependent lipid peroxidation, has attracted widespread attention in the development of anticancer drugs and toxicological studies as a potential mechanism of chemical-induced cytotoxicity. This process is regulated by several antioxidant enzymes, of which the selenium-containing glutathione peroxidase 4 (GPx4) is the prime regulator. However, accurately and reproducibly evaluating ferroptosis in cultured cells is challenging since numerous experimental factors in in vitro setting can influence the results. In the present study, we found that the expression levels of selenoproteins, such as GPx4 and GPx1, fluctuate across several cell lines depending on the selenium content of different origin of fetal bovine serum (FBS). Cells cultured in FBS containing higher selenium concentrations exhibited elevated GPx4 expression, and were resistant to ferroptosis induced by erastin and RSL3. These findings suggest that the variability of selenium content in different FBS batches can significantly influence the susceptibility of cells to ferroptosis, highlighting the importance of standardizing these factors to enhance the reproducibility of ferroptosis-related experiments.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"49 12\",\"pages\":\"555-563\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.49.555\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.49.555","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁凋亡是一种涉及铁依赖性脂质过氧化的细胞死亡模式,作为化学诱导细胞毒性的潜在机制,在抗癌药物的开发和毒理学研究中引起了广泛关注。这一过程受几种抗氧化酶的调控,其中含硒谷胱甘肽过氧化物酶4 (GPx4)是主要的调节剂。然而,准确和可重复地评估培养细胞中的铁下垂是具有挑战性的,因为许多实验因素在体外环境中会影响结果。在本研究中,我们发现硒蛋白(如GPx4和GPx1)的表达水平在不同细胞系中波动,这取决于不同来源的胎牛血清(FBS)的硒含量。在含较高硒浓度的FBS中培养的细胞显示GPx4表达升高,并且对erastin和RSL3诱导的铁下垂具有抗性。这些结果表明,不同批次FBS中硒含量的差异会显著影响细胞对铁沉的易感性,突出了标准化这些因素对提高铁沉相关实验的可重复性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of selenium content in fetal bovine serum on ferroptosis susceptibility and selenoprotein expression in cultured cells.

Ferroptosis, a mode of cell death involving iron-dependent lipid peroxidation, has attracted widespread attention in the development of anticancer drugs and toxicological studies as a potential mechanism of chemical-induced cytotoxicity. This process is regulated by several antioxidant enzymes, of which the selenium-containing glutathione peroxidase 4 (GPx4) is the prime regulator. However, accurately and reproducibly evaluating ferroptosis in cultured cells is challenging since numerous experimental factors in in vitro setting can influence the results. In the present study, we found that the expression levels of selenoproteins, such as GPx4 and GPx1, fluctuate across several cell lines depending on the selenium content of different origin of fetal bovine serum (FBS). Cells cultured in FBS containing higher selenium concentrations exhibited elevated GPx4 expression, and were resistant to ferroptosis induced by erastin and RSL3. These findings suggest that the variability of selenium content in different FBS batches can significantly influence the susceptibility of cells to ferroptosis, highlighting the importance of standardizing these factors to enhance the reproducibility of ferroptosis-related experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
4-8 weeks
期刊介绍: The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信