{"title":"表观遗传抑制miR-137诱导RNF4表达,促进结直肠癌中Wnt信号传导","authors":"Yazhou Wu, Hanhua Li, Yin Long, Zhenzhen Zhang, Fanping Zhang, Runyu Pan, Leijun Meng, Zhan Ma, Kaijing Wang, Bing Zheng, Zhonghong Qie, Wei Gao","doi":"10.1002/mc.23859","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a significant health issue worldwide. Recent studies highlight the critical role of miRNAs in CRC development, particularly miR-137, which acts as a key tumor suppressor. Despite its known role, further exploration of miR-137's downstream signaling is needed to understand its biology and therapeutic potential. We examined the methylation status of miR-137 using one TCGA data and three GEO data sets. A clinical validation cohort of 78 samples was analyzed using MSP for miR-137 promoter methylation. Various in vitro molecular/cellular and animal experiments were conducted to elucidate miR-137's role in CRC. Bioinformatic analysis indicated frequent methylation of miR-137 in CRC tissues, correlating with suppressed expression. EZH2-mediated H3K27 trimethylation silences miR-137 in CRC cells by increasing chromatin compaction, reversible by EZH2 siRNA or inhibitor GSK343. miR-137 inhibits CRC cell proliferation, migration, invasion, and xenograft tumor growth, confirming its tumor-suppressive role. Using the miRWalk repository showed that miR-137 regulates the Wnt signaling pathway by reducing typical protein expression in HCT116 and SW480 cells. miR-137 directly targets RNF4, leading to its downregulation at transcriptional and protein levels, with an observed inverse correlation in CRC tissues. miR-137 accelerates c-Myc and β-catenin degradation by inhibiting RNF4, impacting protein stability and Wnt pathway inhibition. miR-137 is epigenetically silenced through DNA methylation and EZH2-mediated H3K27 trimethylation. It regulates the Wnt signaling pathway by targeting RNF4, leading to c-Myc and β-catenin destabilization. Restoring miR-137 or inhibiting RNF4 suppresses CRC cell proliferation, migration, invasion, and tumor growth, highlighting its therapeutic potential in CRC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"475-489"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenetic Suppression of miR-137 Induces RNF4 Expression, Facilitating Wnt Signaling in Colorectal Cancer.\",\"authors\":\"Yazhou Wu, Hanhua Li, Yin Long, Zhenzhen Zhang, Fanping Zhang, Runyu Pan, Leijun Meng, Zhan Ma, Kaijing Wang, Bing Zheng, Zhonghong Qie, Wei Gao\",\"doi\":\"10.1002/mc.23859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is a significant health issue worldwide. Recent studies highlight the critical role of miRNAs in CRC development, particularly miR-137, which acts as a key tumor suppressor. Despite its known role, further exploration of miR-137's downstream signaling is needed to understand its biology and therapeutic potential. We examined the methylation status of miR-137 using one TCGA data and three GEO data sets. A clinical validation cohort of 78 samples was analyzed using MSP for miR-137 promoter methylation. Various in vitro molecular/cellular and animal experiments were conducted to elucidate miR-137's role in CRC. Bioinformatic analysis indicated frequent methylation of miR-137 in CRC tissues, correlating with suppressed expression. EZH2-mediated H3K27 trimethylation silences miR-137 in CRC cells by increasing chromatin compaction, reversible by EZH2 siRNA or inhibitor GSK343. miR-137 inhibits CRC cell proliferation, migration, invasion, and xenograft tumor growth, confirming its tumor-suppressive role. Using the miRWalk repository showed that miR-137 regulates the Wnt signaling pathway by reducing typical protein expression in HCT116 and SW480 cells. miR-137 directly targets RNF4, leading to its downregulation at transcriptional and protein levels, with an observed inverse correlation in CRC tissues. miR-137 accelerates c-Myc and β-catenin degradation by inhibiting RNF4, impacting protein stability and Wnt pathway inhibition. miR-137 is epigenetically silenced through DNA methylation and EZH2-mediated H3K27 trimethylation. It regulates the Wnt signaling pathway by targeting RNF4, leading to c-Myc and β-catenin destabilization. Restoring miR-137 or inhibiting RNF4 suppresses CRC cell proliferation, migration, invasion, and tumor growth, highlighting its therapeutic potential in CRC.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"475-489\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23859\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23859","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Epigenetic Suppression of miR-137 Induces RNF4 Expression, Facilitating Wnt Signaling in Colorectal Cancer.
Colorectal cancer (CRC) is a significant health issue worldwide. Recent studies highlight the critical role of miRNAs in CRC development, particularly miR-137, which acts as a key tumor suppressor. Despite its known role, further exploration of miR-137's downstream signaling is needed to understand its biology and therapeutic potential. We examined the methylation status of miR-137 using one TCGA data and three GEO data sets. A clinical validation cohort of 78 samples was analyzed using MSP for miR-137 promoter methylation. Various in vitro molecular/cellular and animal experiments were conducted to elucidate miR-137's role in CRC. Bioinformatic analysis indicated frequent methylation of miR-137 in CRC tissues, correlating with suppressed expression. EZH2-mediated H3K27 trimethylation silences miR-137 in CRC cells by increasing chromatin compaction, reversible by EZH2 siRNA or inhibitor GSK343. miR-137 inhibits CRC cell proliferation, migration, invasion, and xenograft tumor growth, confirming its tumor-suppressive role. Using the miRWalk repository showed that miR-137 regulates the Wnt signaling pathway by reducing typical protein expression in HCT116 and SW480 cells. miR-137 directly targets RNF4, leading to its downregulation at transcriptional and protein levels, with an observed inverse correlation in CRC tissues. miR-137 accelerates c-Myc and β-catenin degradation by inhibiting RNF4, impacting protein stability and Wnt pathway inhibition. miR-137 is epigenetically silenced through DNA methylation and EZH2-mediated H3K27 trimethylation. It regulates the Wnt signaling pathway by targeting RNF4, leading to c-Myc and β-catenin destabilization. Restoring miR-137 or inhibiting RNF4 suppresses CRC cell proliferation, migration, invasion, and tumor growth, highlighting its therapeutic potential in CRC.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.