TRPM7参与焦亡并参与癫痫持续状态。

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Xin Tong, Yu Tong, Jiahe Zheng, Ruixue Shi, Hongyue Liang, Meixuan Li, Yulu Meng, Jian Shi, Dongyi Zhao, Corey Ray Seehus, Jialu Wang, Xiaoxue Xu, Tomasz Boczek, Sayuri Suzuki, Andrea Fleig, Reinhold Penner, Naining Zhang, Jianjun Xu, Jingjing Duan, Zhiyi Yu, Wuyang Wang, Weidong Zhao, Feng Guo
{"title":"TRPM7参与焦亡并参与癫痫持续状态。","authors":"Xin Tong, Yu Tong, Jiahe Zheng, Ruixue Shi, Hongyue Liang, Meixuan Li, Yulu Meng, Jian Shi, Dongyi Zhao, Corey Ray Seehus, Jialu Wang, Xiaoxue Xu, Tomasz Boczek, Sayuri Suzuki, Andrea Fleig, Reinhold Penner, Naining Zhang, Jianjun Xu, Jingjing Duan, Zhiyi Yu, Wuyang Wang, Weidong Zhao, Feng Guo","doi":"10.1186/s12974-024-03292-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyroptosis, a novel form of programmed cell death, has been implicated in neurodegeneration diseases. However, its role in status epilepticus (SE)-a condition characterized by prolonged or repeated seizures-remains inadequately understood.</p><p><strong>Methods: </strong>SE were induced by intraperitoneal injection of pilocarpine (PILO). Neuronal excitability was assessed through electroencephalogram (EEG) recordings and patch clamp. Chromatin immunoprecipitation (ChIP) assay was applied to verify the interaction of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) protein with the promoters of Nlrp3 (the gene encoding NOD-like receptor family pyrin domain containing 3) and Trpm7 (transient receptor potential melastatin 7). To further investigate the role of TRPM7 in SE, AAV-sh-TRPM7-EGFP transfected mice and TRPM7 conditional knockout (TRPM7-CKO) mice were utilized.</p><p><strong>Results: </strong>Our findings revealed elevated levels of IL-18 and IL-1β levels in primary epilepsy patients, along with increased expression level of the TRPM7 in SE models. Knockdown of TRPM7 alleviated neuronal damage and pyroptosis, reversing PILO-treated neuronal hyperexcitability. We demonstrated that p-STAT3 binds to the promoters of both Trpm7 and Nlrp3, modulating their transcriptions in SE. Importantly, inhibition of TRPM7 with NS8593, and inflammasome inhibition with MCC950, alleviated neuronal hyperexcitability and pyroptosis in SE. A new compound, SDUY-225, formulated based on the structure of NS8593 mitigated neuronal damage, pyroptosis, and hyperexcitability.</p><p><strong>Conclusions: </strong>TRPM7 contributes to pyroptosis in SE, establishing a positive feedback loop involving the p-STAT3/TRPM7/Zn<sup>2+</sup>/p-STAT3 signaling pathway. Findings in this study raise the possibility that targeting TRPM7 and NLRP3 represents a promising therapeutic approach for SE.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"315"},"PeriodicalIF":9.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608501/pdf/","citationCount":"0","resultStr":"{\"title\":\"TRPM7 contributes to pyroptosis and its involvement in status epilepticus.\",\"authors\":\"Xin Tong, Yu Tong, Jiahe Zheng, Ruixue Shi, Hongyue Liang, Meixuan Li, Yulu Meng, Jian Shi, Dongyi Zhao, Corey Ray Seehus, Jialu Wang, Xiaoxue Xu, Tomasz Boczek, Sayuri Suzuki, Andrea Fleig, Reinhold Penner, Naining Zhang, Jianjun Xu, Jingjing Duan, Zhiyi Yu, Wuyang Wang, Weidong Zhao, Feng Guo\",\"doi\":\"10.1186/s12974-024-03292-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pyroptosis, a novel form of programmed cell death, has been implicated in neurodegeneration diseases. However, its role in status epilepticus (SE)-a condition characterized by prolonged or repeated seizures-remains inadequately understood.</p><p><strong>Methods: </strong>SE were induced by intraperitoneal injection of pilocarpine (PILO). Neuronal excitability was assessed through electroencephalogram (EEG) recordings and patch clamp. Chromatin immunoprecipitation (ChIP) assay was applied to verify the interaction of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) protein with the promoters of Nlrp3 (the gene encoding NOD-like receptor family pyrin domain containing 3) and Trpm7 (transient receptor potential melastatin 7). To further investigate the role of TRPM7 in SE, AAV-sh-TRPM7-EGFP transfected mice and TRPM7 conditional knockout (TRPM7-CKO) mice were utilized.</p><p><strong>Results: </strong>Our findings revealed elevated levels of IL-18 and IL-1β levels in primary epilepsy patients, along with increased expression level of the TRPM7 in SE models. Knockdown of TRPM7 alleviated neuronal damage and pyroptosis, reversing PILO-treated neuronal hyperexcitability. We demonstrated that p-STAT3 binds to the promoters of both Trpm7 and Nlrp3, modulating their transcriptions in SE. Importantly, inhibition of TRPM7 with NS8593, and inflammasome inhibition with MCC950, alleviated neuronal hyperexcitability and pyroptosis in SE. A new compound, SDUY-225, formulated based on the structure of NS8593 mitigated neuronal damage, pyroptosis, and hyperexcitability.</p><p><strong>Conclusions: </strong>TRPM7 contributes to pyroptosis in SE, establishing a positive feedback loop involving the p-STAT3/TRPM7/Zn<sup>2+</sup>/p-STAT3 signaling pathway. Findings in this study raise the possibility that targeting TRPM7 and NLRP3 represents a promising therapeutic approach for SE.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"21 1\",\"pages\":\"315\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608501/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-024-03292-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03292-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:焦亡是一种新的程序性细胞死亡形式,与神经退行性疾病有关。然而,它在癫痫持续状态(SE)中的作用仍未充分了解,SE是一种以长时间或反复发作为特征的疾病。方法:腹腔注射匹罗卡品(pilocarpine, PILO)诱导SE。通过脑电图记录和膜片钳评估神经元兴奋性。采用染色质免疫沉淀法(ChIP)验证磷酸化的信号传导和转录激活因子3 (p-STAT3)蛋白与Nlrp3(编码nod样受体家族pyrin结构域3的基因)和Trpm7(瞬时受体电位美拉他素7)启动子的相互作用。为了进一步研究Trpm7在SE中的作用,我们利用AAV-sh-TRPM7-EGFP转染小鼠和Trpm7条件敲除(Trpm7 - cko)小鼠。结果:我们的研究结果显示,原发性癫痫患者IL-18和IL-1β水平升高,SE模型中TRPM7表达水平升高。TRPM7的下调减轻了神经元损伤和焦亡,逆转了pilo治疗的神经元高兴奋性。我们证明p-STAT3结合Trpm7和Nlrp3的启动子,调节它们在SE中的转录。重要的是,用NS8593抑制TRPM7,用MCC950抑制炎性体,减轻了SE神经元的高兴奋性和焦细胞凋亡。一种基于NS8593结构的新化合物SDUY-225减轻了神经元损伤、焦亡和高兴奋性。结论:TRPM7参与SE的焦亡,建立了p-STAT3/TRPM7/Zn2+/p-STAT3信号通路的正反馈回路。本研究的发现表明,靶向TRPM7和NLRP3可能是治疗SE的一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRPM7 contributes to pyroptosis and its involvement in status epilepticus.

Background: Pyroptosis, a novel form of programmed cell death, has been implicated in neurodegeneration diseases. However, its role in status epilepticus (SE)-a condition characterized by prolonged or repeated seizures-remains inadequately understood.

Methods: SE were induced by intraperitoneal injection of pilocarpine (PILO). Neuronal excitability was assessed through electroencephalogram (EEG) recordings and patch clamp. Chromatin immunoprecipitation (ChIP) assay was applied to verify the interaction of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) protein with the promoters of Nlrp3 (the gene encoding NOD-like receptor family pyrin domain containing 3) and Trpm7 (transient receptor potential melastatin 7). To further investigate the role of TRPM7 in SE, AAV-sh-TRPM7-EGFP transfected mice and TRPM7 conditional knockout (TRPM7-CKO) mice were utilized.

Results: Our findings revealed elevated levels of IL-18 and IL-1β levels in primary epilepsy patients, along with increased expression level of the TRPM7 in SE models. Knockdown of TRPM7 alleviated neuronal damage and pyroptosis, reversing PILO-treated neuronal hyperexcitability. We demonstrated that p-STAT3 binds to the promoters of both Trpm7 and Nlrp3, modulating their transcriptions in SE. Importantly, inhibition of TRPM7 with NS8593, and inflammasome inhibition with MCC950, alleviated neuronal hyperexcitability and pyroptosis in SE. A new compound, SDUY-225, formulated based on the structure of NS8593 mitigated neuronal damage, pyroptosis, and hyperexcitability.

Conclusions: TRPM7 contributes to pyroptosis in SE, establishing a positive feedback loop involving the p-STAT3/TRPM7/Zn2+/p-STAT3 signaling pathway. Findings in this study raise the possibility that targeting TRPM7 and NLRP3 represents a promising therapeutic approach for SE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信