在活细胞成像中,基于距离的土工自监督框架用于细胞动态分级。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Fengqian Pang, Chunyue Lei, Hongfei Zhao, Zhiqiang Xing
{"title":"在活细胞成像中,基于距离的土工自监督框架用于细胞动态分级。","authors":"Fengqian Pang, Chunyue Lei, Hongfei Zhao, Zhiqiang Xing","doi":"10.1089/cmb.2024.0672","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular appearance and its dynamics frequently serve as a proxy measurement of live-cell physiological properties. The computational analysis of cell properties is considered to be a significant endeavor in biological and biomedical research. Deep learning has garnered considerable success across various fields. In light of this, various neural networks have been developed to analyze live-cell microscopic videos and capture cellular dynamics with biological significance. Specifically, cellular dynamic grading (CDG) is the task that provides a predefined dynamic grade for a live-cell according to the speed of cellular deformation and intracellular movement. This task involves recording the morphological and cytoplasmic dynamics in live-cell microscopic videos. Similar to other medical image processing tasks, CDG faces challenges in collecting and annotating cellular videos. These deficiencies in medical data limit the performance of deep learning models. In this article, we propose a novel self-supervised framework to overcome these limitations for the CDG task. Our framework relies on the assumption that increasing or decreasing cell dynamic grades is consistent with accelerating or decelerating cell appearance change in videos, respectively. This consistency is subsequently incorporated as a constraint in the loss function for the self-supervised training strategy. Our framework is implemented by formulating a probability transition matrix based on the Earth Mover's Distance and imposing a loss constraint on the elements of this matrix. Experimental results demonstrate that our proposed framework enhances the model's ability to learn spatiotemporal dynamics. Furthermore, our framework outperforms the existing methods on our cell video database.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Earth Mover's Distance-Based Self-Supervised Framework for Cellular Dynamic Grading in Live-Cell Imaging.\",\"authors\":\"Fengqian Pang, Chunyue Lei, Hongfei Zhao, Zhiqiang Xing\",\"doi\":\"10.1089/cmb.2024.0672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular appearance and its dynamics frequently serve as a proxy measurement of live-cell physiological properties. The computational analysis of cell properties is considered to be a significant endeavor in biological and biomedical research. Deep learning has garnered considerable success across various fields. In light of this, various neural networks have been developed to analyze live-cell microscopic videos and capture cellular dynamics with biological significance. Specifically, cellular dynamic grading (CDG) is the task that provides a predefined dynamic grade for a live-cell according to the speed of cellular deformation and intracellular movement. This task involves recording the morphological and cytoplasmic dynamics in live-cell microscopic videos. Similar to other medical image processing tasks, CDG faces challenges in collecting and annotating cellular videos. These deficiencies in medical data limit the performance of deep learning models. In this article, we propose a novel self-supervised framework to overcome these limitations for the CDG task. Our framework relies on the assumption that increasing or decreasing cell dynamic grades is consistent with accelerating or decelerating cell appearance change in videos, respectively. This consistency is subsequently incorporated as a constraint in the loss function for the self-supervised training strategy. Our framework is implemented by formulating a probability transition matrix based on the Earth Mover's Distance and imposing a loss constraint on the elements of this matrix. Experimental results demonstrate that our proposed framework enhances the model's ability to learn spatiotemporal dynamics. Furthermore, our framework outperforms the existing methods on our cell video database.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0672\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0672","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细胞外观及其动力学常常作为活细胞生理特性的代理测量。细胞特性的计算分析被认为是生物学和生物医学研究中的一项重要工作。深度学习在各个领域都取得了相当大的成功。鉴于此,已经开发了各种神经网络来分析活细胞微观视频并捕获具有生物学意义的细胞动力学。具体来说,细胞动态分级(CDG)是根据细胞变形和细胞内运动的速度为活细胞提供预定义的动态分级的任务。这项任务包括在活细胞显微录像中记录形态学和细胞质动力学。与其他医学图像处理任务类似,CDG在收集和注释蜂窝视频方面面临挑战。医疗数据中的这些缺陷限制了深度学习模型的性能。在本文中,我们提出了一种新的自监督框架来克服CDG任务的这些限制。我们的框架依赖于这样的假设,即增加或减少细胞动态等级分别与视频中加速或减速细胞外观变化一致。这种一致性随后作为约束纳入到自监督训练策略的损失函数中。我们的框架是通过制定一个基于地球移动距离的概率转移矩阵并对该矩阵的元素施加损失约束来实现的。实验结果表明,我们提出的框架增强了模型学习时空动态的能力。此外,我们的框架在我们的手机视频数据库上优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Earth Mover's Distance-Based Self-Supervised Framework for Cellular Dynamic Grading in Live-Cell Imaging.

Cellular appearance and its dynamics frequently serve as a proxy measurement of live-cell physiological properties. The computational analysis of cell properties is considered to be a significant endeavor in biological and biomedical research. Deep learning has garnered considerable success across various fields. In light of this, various neural networks have been developed to analyze live-cell microscopic videos and capture cellular dynamics with biological significance. Specifically, cellular dynamic grading (CDG) is the task that provides a predefined dynamic grade for a live-cell according to the speed of cellular deformation and intracellular movement. This task involves recording the morphological and cytoplasmic dynamics in live-cell microscopic videos. Similar to other medical image processing tasks, CDG faces challenges in collecting and annotating cellular videos. These deficiencies in medical data limit the performance of deep learning models. In this article, we propose a novel self-supervised framework to overcome these limitations for the CDG task. Our framework relies on the assumption that increasing or decreasing cell dynamic grades is consistent with accelerating or decelerating cell appearance change in videos, respectively. This consistency is subsequently incorporated as a constraint in the loss function for the self-supervised training strategy. Our framework is implemented by formulating a probability transition matrix based on the Earth Mover's Distance and imposing a loss constraint on the elements of this matrix. Experimental results demonstrate that our proposed framework enhances the model's ability to learn spatiotemporal dynamics. Furthermore, our framework outperforms the existing methods on our cell video database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信