Heather A Baker, Jonathan P Bernardini, Veronika Csizmók, Angel Madero, Shriya Kamat, Hailey Eng, Jessica Lacoste, Faith A Yeung, Sophie Comyn, Elizabeth Hui, Gaetano Calabrese, Brian Raught, Mikko Taipale, Thibault Mayor
{"title":"共伴侣DNAJA2缓冲错义突变的胞质蛋白的蛋白酶体降解。","authors":"Heather A Baker, Jonathan P Bernardini, Veronika Csizmók, Angel Madero, Shriya Kamat, Hailey Eng, Jessica Lacoste, Faith A Yeung, Sophie Comyn, Elizabeth Hui, Gaetano Calabrese, Brian Raught, Mikko Taipale, Thibault Mayor","doi":"10.1242/jcs.262019","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations can disrupt the native function of protein by causing misfolding, which is generally handled by an intricate protein quality control network. To better understand the triaging mechanisms for misfolded cytosolic proteins, we screened a human mutation library to identify a panel of unstable mutations. The degradation of these mutated cytosolic proteins is largely dependent on the ubiquitin proteasome system. Using BioID proximity labelling, we found that the co-chaperones DNAJA1 and DNAJA2 are key interactors with one of the mutated proteins. Notably, the absence of DNAJA2 increases the turnover of the mutant but not the wild-type protein. Our work indicates that specific missense mutations in cytosolic proteins can promote enhanced interactions with molecular chaperones. Assessment of the broader panel of cytosolic mutant proteins shows that the co-chaperone DNAJA2 exhibits two distinct behaviours - acting to stabilize a wide array of cytosolic proteins, including wild-type variants, and to specifically 'buffer' some mutant proteins to reduce their turnover. Our work illustrates how distinct elements of the protein homeostasis network are utilized in the presence of a cytosolic misfolded protein.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The co-chaperone DNAJA2 buffers proteasomal degradation of cytosolic proteins with missense mutations.\",\"authors\":\"Heather A Baker, Jonathan P Bernardini, Veronika Csizmók, Angel Madero, Shriya Kamat, Hailey Eng, Jessica Lacoste, Faith A Yeung, Sophie Comyn, Elizabeth Hui, Gaetano Calabrese, Brian Raught, Mikko Taipale, Thibault Mayor\",\"doi\":\"10.1242/jcs.262019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations can disrupt the native function of protein by causing misfolding, which is generally handled by an intricate protein quality control network. To better understand the triaging mechanisms for misfolded cytosolic proteins, we screened a human mutation library to identify a panel of unstable mutations. The degradation of these mutated cytosolic proteins is largely dependent on the ubiquitin proteasome system. Using BioID proximity labelling, we found that the co-chaperones DNAJA1 and DNAJA2 are key interactors with one of the mutated proteins. Notably, the absence of DNAJA2 increases the turnover of the mutant but not the wild-type protein. Our work indicates that specific missense mutations in cytosolic proteins can promote enhanced interactions with molecular chaperones. Assessment of the broader panel of cytosolic mutant proteins shows that the co-chaperone DNAJA2 exhibits two distinct behaviours - acting to stabilize a wide array of cytosolic proteins, including wild-type variants, and to specifically 'buffer' some mutant proteins to reduce their turnover. Our work illustrates how distinct elements of the protein homeostasis network are utilized in the presence of a cytosolic misfolded protein.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.262019\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.262019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The co-chaperone DNAJA2 buffers proteasomal degradation of cytosolic proteins with missense mutations.
Mutations can disrupt the native function of protein by causing misfolding, which is generally handled by an intricate protein quality control network. To better understand the triaging mechanisms for misfolded cytosolic proteins, we screened a human mutation library to identify a panel of unstable mutations. The degradation of these mutated cytosolic proteins is largely dependent on the ubiquitin proteasome system. Using BioID proximity labelling, we found that the co-chaperones DNAJA1 and DNAJA2 are key interactors with one of the mutated proteins. Notably, the absence of DNAJA2 increases the turnover of the mutant but not the wild-type protein. Our work indicates that specific missense mutations in cytosolic proteins can promote enhanced interactions with molecular chaperones. Assessment of the broader panel of cytosolic mutant proteins shows that the co-chaperone DNAJA2 exhibits two distinct behaviours - acting to stabilize a wide array of cytosolic proteins, including wild-type variants, and to specifically 'buffer' some mutant proteins to reduce their turnover. Our work illustrates how distinct elements of the protein homeostasis network are utilized in the presence of a cytosolic misfolded protein.