酸感离子通道-1参与PGE2跨细胞传递脊髓损伤后髓鞘再生失败。

IF 9.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zuomeng Wu, Tianyu Han, Yixiang Dong, Wang Ying, Huang Fang, Yunlei Liu, Peiwen Song, Cailiang Shen
{"title":"酸感离子通道-1参与PGE2跨细胞传递脊髓损伤后髓鞘再生失败。","authors":"Zuomeng Wu, Tianyu Han, Yixiang Dong, Wang Ying, Huang Fang, Yunlei Liu, Peiwen Song, Cailiang Shen","doi":"10.1186/s11658-024-00672-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic injuries to spinal cord lead to severe motor, sensory, and autonomic dysfunction. The accumulation of inhibitory compounds plays a pivotal role in the secondary damage to sparing neural tissue and the failure of axonal regeneration and remyelination. Acid-sensing ion channel-1(ASIC1A) is widely activated following neurotrauma, including spinal cord injury (SCI). However, its role in SCI remains elusive.</p><p><strong>Methods: </strong>The effects of acidic environment on the differentiation and genes changes of neural stem cells (NSCs) were assessed by immunofluorescence staining and RNA-sequencing analysis, respectively. The expression of ASIC1A and prostaglandin endoperoxide synthase 2 (PTGS2) were detected by western blot and immunofluorescence staining. The concentration of prostaglandin E2 (PGE2) within NSC-derived extracellular vesicles were evaluated by ELISA. Small-interfering RNAs (siRNAs) were used to knock down Asic1a and Ptgs2 expression in NSCs. The myelin sheath regeneration and axonal remyelination in rats and Asic1a-KO mice were assessed by immunofluorescence staining.</p><p><strong>Results: </strong>Following injury to the spinal cord, ASIC1A was found to be colocalized and upregulated in NSCs. ASIC1A activation prevents the differentiation of NSCs into oligodendrocytes by upregulating PTGS2, which leads to increased production and release of PGE2 within extracellular vesicles (EVs). ASIC1A or PTGS2 deficiency in NSCs counters the ASIC1A-related effects on mediating NSC differentiation by reducing PGE2 expression within NSC-derived EVs. Furthermore, intervention in ASIC1A signaling by administration of ASIC1A inhibitors or genetic deletion of ASIC1A demonstrated a pronounced advantage in enhancing myelin sheath regeneration and axonal remyelination.</p><p><strong>Conclusions: </strong>The activation of ASIC1A prevents NSC differentiation into oligodendrocytes via the transcellular NSC-to-NSC delivery of PGE2, resulting in the failure of myelin sheath regeneration and axonal remyelination following SCI. The inhibition of ASIC1A presents a promising therapeutic strategy for the treatment of SCI.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"149"},"PeriodicalIF":9.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616324/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acid-sensing ion channel-1 contributes to the failure of myelin sheath regeneration following spinal cord injury by transcellular delivery of PGE2.\",\"authors\":\"Zuomeng Wu, Tianyu Han, Yixiang Dong, Wang Ying, Huang Fang, Yunlei Liu, Peiwen Song, Cailiang Shen\",\"doi\":\"10.1186/s11658-024-00672-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Traumatic injuries to spinal cord lead to severe motor, sensory, and autonomic dysfunction. The accumulation of inhibitory compounds plays a pivotal role in the secondary damage to sparing neural tissue and the failure of axonal regeneration and remyelination. Acid-sensing ion channel-1(ASIC1A) is widely activated following neurotrauma, including spinal cord injury (SCI). However, its role in SCI remains elusive.</p><p><strong>Methods: </strong>The effects of acidic environment on the differentiation and genes changes of neural stem cells (NSCs) were assessed by immunofluorescence staining and RNA-sequencing analysis, respectively. The expression of ASIC1A and prostaglandin endoperoxide synthase 2 (PTGS2) were detected by western blot and immunofluorescence staining. The concentration of prostaglandin E2 (PGE2) within NSC-derived extracellular vesicles were evaluated by ELISA. Small-interfering RNAs (siRNAs) were used to knock down Asic1a and Ptgs2 expression in NSCs. The myelin sheath regeneration and axonal remyelination in rats and Asic1a-KO mice were assessed by immunofluorescence staining.</p><p><strong>Results: </strong>Following injury to the spinal cord, ASIC1A was found to be colocalized and upregulated in NSCs. ASIC1A activation prevents the differentiation of NSCs into oligodendrocytes by upregulating PTGS2, which leads to increased production and release of PGE2 within extracellular vesicles (EVs). ASIC1A or PTGS2 deficiency in NSCs counters the ASIC1A-related effects on mediating NSC differentiation by reducing PGE2 expression within NSC-derived EVs. Furthermore, intervention in ASIC1A signaling by administration of ASIC1A inhibitors or genetic deletion of ASIC1A demonstrated a pronounced advantage in enhancing myelin sheath regeneration and axonal remyelination.</p><p><strong>Conclusions: </strong>The activation of ASIC1A prevents NSC differentiation into oligodendrocytes via the transcellular NSC-to-NSC delivery of PGE2, resulting in the failure of myelin sheath regeneration and axonal remyelination following SCI. The inhibition of ASIC1A presents a promising therapeutic strategy for the treatment of SCI.</p>\",\"PeriodicalId\":9688,\"journal\":{\"name\":\"Cellular & Molecular Biology Letters\",\"volume\":\"29 1\",\"pages\":\"149\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616324/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & Molecular Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s11658-024-00672-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-024-00672-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:脊髓创伤性损伤可导致严重的运动、感觉和自主神经功能障碍。抑制化合物的积累在保留神经组织的继发性损伤和轴突再生和髓鞘再生失败中起关键作用。酸感应离子通道-1(ASIC1A)在神经损伤后被广泛激活,包括脊髓损伤(SCI)。然而,它在SCI中的作用仍然难以捉摸。方法:分别采用免疫荧光染色法和rna测序法观察酸性环境对神经干细胞(NSCs)分化和基因变化的影响。western blot和免疫荧光染色检测ASIC1A和前列腺素内过氧化物合成酶2 (PTGS2)的表达。采用ELISA法检测细胞外囊泡中前列腺素E2 (PGE2)的含量。使用小干扰rna (sirna)敲除NSCs中Asic1a和Ptgs2的表达。采用免疫荧光染色法观察大鼠和Asic1a-KO小鼠的髓鞘再生和轴突再髓鞘形成。结果:脊髓损伤后,ASIC1A被发现在NSCs中共定位并上调。ASIC1A激活通过上调PTGS2来阻止NSCs向少突胶质细胞的分化,从而导致细胞外囊泡(ev)中PGE2的产生和释放增加。NSCs中ASIC1A或PTGS2缺陷通过减少NSCs衍生ev中PGE2的表达来对抗ASIC1A在介导NSC分化中的相关作用。此外,通过给予ASIC1A抑制剂或基因缺失ASIC1A来干预ASIC1A信号传导,在促进髓鞘再生和轴突再髓鞘形成方面具有明显的优势。结论:ASIC1A的激活通过PGE2的跨细胞NSC- NSC传递阻止NSC向少突胶质细胞分化,导致脊髓损伤后髓鞘再生和轴突再髓鞘形成失败。抑制ASIC1A是治疗脊髓损伤的一种很有前景的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acid-sensing ion channel-1 contributes to the failure of myelin sheath regeneration following spinal cord injury by transcellular delivery of PGE2.

Background: Traumatic injuries to spinal cord lead to severe motor, sensory, and autonomic dysfunction. The accumulation of inhibitory compounds plays a pivotal role in the secondary damage to sparing neural tissue and the failure of axonal regeneration and remyelination. Acid-sensing ion channel-1(ASIC1A) is widely activated following neurotrauma, including spinal cord injury (SCI). However, its role in SCI remains elusive.

Methods: The effects of acidic environment on the differentiation and genes changes of neural stem cells (NSCs) were assessed by immunofluorescence staining and RNA-sequencing analysis, respectively. The expression of ASIC1A and prostaglandin endoperoxide synthase 2 (PTGS2) were detected by western blot and immunofluorescence staining. The concentration of prostaglandin E2 (PGE2) within NSC-derived extracellular vesicles were evaluated by ELISA. Small-interfering RNAs (siRNAs) were used to knock down Asic1a and Ptgs2 expression in NSCs. The myelin sheath regeneration and axonal remyelination in rats and Asic1a-KO mice were assessed by immunofluorescence staining.

Results: Following injury to the spinal cord, ASIC1A was found to be colocalized and upregulated in NSCs. ASIC1A activation prevents the differentiation of NSCs into oligodendrocytes by upregulating PTGS2, which leads to increased production and release of PGE2 within extracellular vesicles (EVs). ASIC1A or PTGS2 deficiency in NSCs counters the ASIC1A-related effects on mediating NSC differentiation by reducing PGE2 expression within NSC-derived EVs. Furthermore, intervention in ASIC1A signaling by administration of ASIC1A inhibitors or genetic deletion of ASIC1A demonstrated a pronounced advantage in enhancing myelin sheath regeneration and axonal remyelination.

Conclusions: The activation of ASIC1A prevents NSC differentiation into oligodendrocytes via the transcellular NSC-to-NSC delivery of PGE2, resulting in the failure of myelin sheath regeneration and axonal remyelination following SCI. The inhibition of ASIC1A presents a promising therapeutic strategy for the treatment of SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular & Molecular Biology Letters
Cellular & Molecular Biology Letters 生物-生化与分子生物学
CiteScore
11.60
自引率
13.30%
发文量
101
审稿时长
3 months
期刊介绍: Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信