{"title":"推进罕见和未确诊疾病研究的三重密码模型。","authors":"Gwen Lomberk, Raul Urrutia","doi":"10.1080/17501911.2024.2436837","DOIUrl":null,"url":null,"abstract":"<p><p>Rare and undiagnosed diseases pose significant challenges for understanding their mechanisms, diagnosis, and treatment. The Triple Code Model, an integrative paradigm described here, considers the combined influence of the genetic code, epigenetic code, and nuclear structure (an emerging code), as fundamental biochemical mechanisms underlying many rare diseases. Studies demonstrate dysfunctional membrane and cytoplasmic signals instruct the epigenome to ultimately impact the 3D structure and dynamics of the nucleus, highlighting their close interrelationships. Consequently, this model offers a holistic perspective on rare and undiagnosed diseases by moving beyond a solely genetic view. We propose that this integrated framework will efficiently guide rare disease research by taking it 'Beyond the Base Pairs,' leading to improved diagnostics and personalized treatments.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"115-124"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792834/pdf/","citationCount":"0","resultStr":"{\"title\":\"The triple code model for advancing research in rare and undiagnosed diseases beyond the base pairs.\",\"authors\":\"Gwen Lomberk, Raul Urrutia\",\"doi\":\"10.1080/17501911.2024.2436837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rare and undiagnosed diseases pose significant challenges for understanding their mechanisms, diagnosis, and treatment. The Triple Code Model, an integrative paradigm described here, considers the combined influence of the genetic code, epigenetic code, and nuclear structure (an emerging code), as fundamental biochemical mechanisms underlying many rare diseases. Studies demonstrate dysfunctional membrane and cytoplasmic signals instruct the epigenome to ultimately impact the 3D structure and dynamics of the nucleus, highlighting their close interrelationships. Consequently, this model offers a holistic perspective on rare and undiagnosed diseases by moving beyond a solely genetic view. We propose that this integrated framework will efficiently guide rare disease research by taking it 'Beyond the Base Pairs,' leading to improved diagnostics and personalized treatments.</p>\",\"PeriodicalId\":11959,\"journal\":{\"name\":\"Epigenomics\",\"volume\":\" \",\"pages\":\"115-124\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17501911.2024.2436837\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2024.2436837","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The triple code model for advancing research in rare and undiagnosed diseases beyond the base pairs.
Rare and undiagnosed diseases pose significant challenges for understanding their mechanisms, diagnosis, and treatment. The Triple Code Model, an integrative paradigm described here, considers the combined influence of the genetic code, epigenetic code, and nuclear structure (an emerging code), as fundamental biochemical mechanisms underlying many rare diseases. Studies demonstrate dysfunctional membrane and cytoplasmic signals instruct the epigenome to ultimately impact the 3D structure and dynamics of the nucleus, highlighting their close interrelationships. Consequently, this model offers a holistic perspective on rare and undiagnosed diseases by moving beyond a solely genetic view. We propose that this integrated framework will efficiently guide rare disease research by taking it 'Beyond the Base Pairs,' leading to improved diagnostics and personalized treatments.
期刊介绍:
Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community.
Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.