用蛋白质工程技术调节金属还原杆菌PpcA的氧化还原特性。

IF 4.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pilar C Portela, Marta A Silva, Alexandre Almeida, Gonçalo F Damas, Carlos A Salgueiro
{"title":"用蛋白质工程技术调节金属还原杆菌PpcA的氧化还原特性。","authors":"Pilar C Portela, Marta A Silva, Alexandre Almeida, Gonçalo F Damas, Carlos A Salgueiro","doi":"10.1042/BCJ20240423","DOIUrl":null,"url":null,"abstract":"<p><p>Geobacter's unique ability to perform extracellular electron transfer (EET) to electrodes in microbial fuel cells (MFCs) has sparked the implementation of sustainable production of electrical energy. However, the electrochemical performance of Geobacter's biofilms in MFCs remains challenging to implement industrially. Multiple approaches are being investigated to enhance MFC technologies. Protein engineering of multihaem cytochromes, key components of Geobacter's EET pathways, can, conceivably, be pursued to improve the EET chain. The periplasmic cytochrome PpcA bridges ET from the inner to the outer membrane and its deletion impairs this crucial step. The functional characterisation of PpcA homologues from Geobacter sulfurreducens (Gs) and Geobacter metallireducens (Gm) revealed a significantly different redox behaviour even though they only differ by thirteen amino acids. In a previous study, we found that the single replacement of a tryptophan residue by methionine (W45M) in PpcAGm shifted the reduction potential value 33% towards that of PpcAGs. In this work, we expanded our investigation to include other non-conserved residues by conducting five mutation rounds. We identified the most relevant residues controlling the redox properties of PpcAGm. With just four mutations (K19, G25, N26, W45) the reduction potential value of PpcAGm was shifted 71% toward that of PpcAGs. Additionally, in the quadruple mutant, it was possible to replicate the haem oxidation order and the functional mechanisms of PpcAGs, which differ from those in PpcAGm. Overall, the mutants exhibit diverse redox and functional mechanisms that could be explored as a library for the future design of minimal, synthetic, ET chains in Geobacter.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"2017-2036"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tweaking the redox properties of PpcA from Geobacter metallireducens with protein engineering.\",\"authors\":\"Pilar C Portela, Marta A Silva, Alexandre Almeida, Gonçalo F Damas, Carlos A Salgueiro\",\"doi\":\"10.1042/BCJ20240423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Geobacter's unique ability to perform extracellular electron transfer (EET) to electrodes in microbial fuel cells (MFCs) has sparked the implementation of sustainable production of electrical energy. However, the electrochemical performance of Geobacter's biofilms in MFCs remains challenging to implement industrially. Multiple approaches are being investigated to enhance MFC technologies. Protein engineering of multihaem cytochromes, key components of Geobacter's EET pathways, can, conceivably, be pursued to improve the EET chain. The periplasmic cytochrome PpcA bridges ET from the inner to the outer membrane and its deletion impairs this crucial step. The functional characterisation of PpcA homologues from Geobacter sulfurreducens (Gs) and Geobacter metallireducens (Gm) revealed a significantly different redox behaviour even though they only differ by thirteen amino acids. In a previous study, we found that the single replacement of a tryptophan residue by methionine (W45M) in PpcAGm shifted the reduction potential value 33% towards that of PpcAGs. In this work, we expanded our investigation to include other non-conserved residues by conducting five mutation rounds. We identified the most relevant residues controlling the redox properties of PpcAGm. With just four mutations (K19, G25, N26, W45) the reduction potential value of PpcAGm was shifted 71% toward that of PpcAGs. Additionally, in the quadruple mutant, it was possible to replicate the haem oxidation order and the functional mechanisms of PpcAGs, which differ from those in PpcAGm. Overall, the mutants exhibit diverse redox and functional mechanisms that could be explored as a library for the future design of minimal, synthetic, ET chains in Geobacter.</p>\",\"PeriodicalId\":8825,\"journal\":{\"name\":\"Biochemical Journal\",\"volume\":\" \",\"pages\":\"2017-2036\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BCJ20240423\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20240423","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Geobacter在微生物燃料电池(mfc)中向电极进行细胞外电子转移(EET)的独特能力引发了可持续电能生产的实施。然而,地obacter生物膜在mfc中的电化学性能在工业上仍然具有挑战性。目前正在研究多种方法来增强MFC技术。多血红素细胞色素是Geobacter EET通路的关键组成部分,可以通过蛋白质工程来改善EET链。质周细胞色素PpcA将ET从内膜连接到外膜,它的缺失损害了这一关键步骤。G. sulphreducens (Gs)和G. metallireducens (Gm)的PpcA同源物的功能表征表明,尽管它们只有13个氨基酸的差异,但它们的氧化还原行为却存在显著差异。在之前的研究中,我们发现在PpcAGm中,蛋氨酸(W45M)代替色氨酸残基使还原电位值向ppcag偏移33%。在这项工作中,我们扩大了我们的研究,包括其他非保守残基通过进行五轮突变。我们确定了控制PpcAGm氧化还原特性的最相关残基。只有4个突变(K19、G25、N26、W45), PpcAGm的还原电位向ppcag的还原电位偏移了71%。此外,在四重突变体中,有可能复制ppcag的血红素氧化顺序和功能机制,这与PpcAGm不同。总的来说,这些突变体表现出不同的氧化还原和功能机制,可以作为未来设计Geobacter中最小的、合成的ET链的文库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tweaking the redox properties of PpcA from Geobacter metallireducens with protein engineering.

Geobacter's unique ability to perform extracellular electron transfer (EET) to electrodes in microbial fuel cells (MFCs) has sparked the implementation of sustainable production of electrical energy. However, the electrochemical performance of Geobacter's biofilms in MFCs remains challenging to implement industrially. Multiple approaches are being investigated to enhance MFC technologies. Protein engineering of multihaem cytochromes, key components of Geobacter's EET pathways, can, conceivably, be pursued to improve the EET chain. The periplasmic cytochrome PpcA bridges ET from the inner to the outer membrane and its deletion impairs this crucial step. The functional characterisation of PpcA homologues from Geobacter sulfurreducens (Gs) and Geobacter metallireducens (Gm) revealed a significantly different redox behaviour even though they only differ by thirteen amino acids. In a previous study, we found that the single replacement of a tryptophan residue by methionine (W45M) in PpcAGm shifted the reduction potential value 33% towards that of PpcAGs. In this work, we expanded our investigation to include other non-conserved residues by conducting five mutation rounds. We identified the most relevant residues controlling the redox properties of PpcAGm. With just four mutations (K19, G25, N26, W45) the reduction potential value of PpcAGm was shifted 71% toward that of PpcAGs. Additionally, in the quadruple mutant, it was possible to replicate the haem oxidation order and the functional mechanisms of PpcAGs, which differ from those in PpcAGm. Overall, the mutants exhibit diverse redox and functional mechanisms that could be explored as a library for the future design of minimal, synthetic, ET chains in Geobacter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Journal
Biochemical Journal 生物-生化与分子生物学
CiteScore
8.00
自引率
0.00%
发文量
255
审稿时长
1 months
期刊介绍: Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology. The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed. Painless publishing: All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for. Areas covered in the journal include: Cell biology Chemical biology Energy processes Gene expression and regulation Mechanisms of disease Metabolism Molecular structure and function Plant biology Signalling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信