Lingling Chen , Jie Tang , Yunli Chang , Dongyun Hang , Jieru Ji , Guoyu Chen
{"title":"SMURF1通过丢失patz1诱导的CCNG2转录,导致β-catenin信号介导的食管鳞状癌进展。","authors":"Lingling Chen , Jie Tang , Yunli Chang , Dongyun Hang , Jieru Ji , Guoyu Chen","doi":"10.1016/j.bcp.2024.116688","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclin G2 (CCNG2), a known inhibitor of cell cycle progression, has been identified as a suppressor for the canonical β-catenin pathway. This study explores the impact of CCNG2 on β-catenin activity and malignant characteristics of esophageal squamous cell carcinoma (ESCC) cells, and the mechanism behind CCNG2 dysregulation. In ESCC tissues and cells, CCNG2 was under-expressed and associated with poor clinical outcomes, whereas β-catenin showed an opposite trend. Inducing CCNG2 overexpression in ESCC cells led to a reduction in β-catenin levels, which in turn suppressed proliferation, cell cycle progression, migration, invasion, stemness, and tumorigenesis. Additionally, it enhanced the cytotoxicity and proliferation of T cells in co-culture systems. However, these beneficial effects were negated by the Wnt signaling agonist BML-284. Furthermore, PATZ1 was found as a transcription factor promoting CCNG2 transcription. However, the PATZ1 protein in ESCC cells was degraded by SMURF1. Silencing of SMURF1 restored CCNG2 expression and inhibited β-catenin, thereby suppressing the malignant phenotype of ESCC cells and reducing T cell exhaustion. Yet, these effects were blocked by further silencing of PATZ1. In summary, this research demonstrates that SMURF1 activates β-catenin signaling by suppressing the PATZ1/CCNG2 axis, thereby promoting the progression of ESCC.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"232 ","pages":"Article 116688"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMURF1 leads to the β-catenin signaling-mediated progression of esophageal squamous carcinoma by losing PATZ1-induced CCNG2 transcription\",\"authors\":\"Lingling Chen , Jie Tang , Yunli Chang , Dongyun Hang , Jieru Ji , Guoyu Chen\",\"doi\":\"10.1016/j.bcp.2024.116688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cyclin G2 (CCNG2), a known inhibitor of cell cycle progression, has been identified as a suppressor for the canonical β-catenin pathway. This study explores the impact of CCNG2 on β-catenin activity and malignant characteristics of esophageal squamous cell carcinoma (ESCC) cells, and the mechanism behind CCNG2 dysregulation. In ESCC tissues and cells, CCNG2 was under-expressed and associated with poor clinical outcomes, whereas β-catenin showed an opposite trend. Inducing CCNG2 overexpression in ESCC cells led to a reduction in β-catenin levels, which in turn suppressed proliferation, cell cycle progression, migration, invasion, stemness, and tumorigenesis. Additionally, it enhanced the cytotoxicity and proliferation of T cells in co-culture systems. However, these beneficial effects were negated by the Wnt signaling agonist BML-284. Furthermore, PATZ1 was found as a transcription factor promoting CCNG2 transcription. However, the PATZ1 protein in ESCC cells was degraded by SMURF1. Silencing of SMURF1 restored CCNG2 expression and inhibited β-catenin, thereby suppressing the malignant phenotype of ESCC cells and reducing T cell exhaustion. Yet, these effects were blocked by further silencing of PATZ1. In summary, this research demonstrates that SMURF1 activates β-catenin signaling by suppressing the PATZ1/CCNG2 axis, thereby promoting the progression of ESCC.</div></div>\",\"PeriodicalId\":8806,\"journal\":{\"name\":\"Biochemical pharmacology\",\"volume\":\"232 \",\"pages\":\"Article 116688\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006295224006890\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224006890","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
SMURF1 leads to the β-catenin signaling-mediated progression of esophageal squamous carcinoma by losing PATZ1-induced CCNG2 transcription
Cyclin G2 (CCNG2), a known inhibitor of cell cycle progression, has been identified as a suppressor for the canonical β-catenin pathway. This study explores the impact of CCNG2 on β-catenin activity and malignant characteristics of esophageal squamous cell carcinoma (ESCC) cells, and the mechanism behind CCNG2 dysregulation. In ESCC tissues and cells, CCNG2 was under-expressed and associated with poor clinical outcomes, whereas β-catenin showed an opposite trend. Inducing CCNG2 overexpression in ESCC cells led to a reduction in β-catenin levels, which in turn suppressed proliferation, cell cycle progression, migration, invasion, stemness, and tumorigenesis. Additionally, it enhanced the cytotoxicity and proliferation of T cells in co-culture systems. However, these beneficial effects were negated by the Wnt signaling agonist BML-284. Furthermore, PATZ1 was found as a transcription factor promoting CCNG2 transcription. However, the PATZ1 protein in ESCC cells was degraded by SMURF1. Silencing of SMURF1 restored CCNG2 expression and inhibited β-catenin, thereby suppressing the malignant phenotype of ESCC cells and reducing T cell exhaustion. Yet, these effects were blocked by further silencing of PATZ1. In summary, this research demonstrates that SMURF1 activates β-catenin signaling by suppressing the PATZ1/CCNG2 axis, thereby promoting the progression of ESCC.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.