利用金属配位约束改善大分子结构的细化。

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov
{"title":"利用金属配位约束改善大分子结构的细化。","authors":"Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov","doi":"10.1107/S2059798324011458","DOIUrl":null,"url":null,"abstract":"<p><p>Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.</p>","PeriodicalId":7116,"journal":{"name":"Acta Crystallographica. Section D, Structural Biology","volume":" ","pages":"821-833"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626771/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving macromolecular structure refinement with metal-coordination restraints.\",\"authors\":\"Kaveh H Babai, Fei Long, Martin Malý, Keitaro Yamashita, Garib N Murshudov\",\"doi\":\"10.1107/S2059798324011458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.</p>\",\"PeriodicalId\":7116,\"journal\":{\"name\":\"Acta Crystallographica. Section D, Structural Biology\",\"volume\":\" \",\"pages\":\"821-833\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626771/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica. Section D, Structural Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S2059798324011458\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica. Section D, Structural Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2059798324011458","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

金属是许多蛋白质的结构和功能的重要组成部分。然而,由于金属配位几何的复杂性和多样性,对其配位环境的精确建模仍然是一个挑战。为了解决这个问题,提出了一种从晶体学开放数据库中提取和分析配位信息的方法,包括键长和键角。利用这些数据,生成含金属构件的综合描述。特定大分子中特定组分的立体化学信息生成器利用包含该组分的示例PDB/mmCIF文件来解释实际的周围环境。开发并实现了一种匹配过程,将导出的金属结构与坐标几何库中的理想坐标对齐。此外,根据匹配的质量,采用各种策略来编制距离和角度统计数据,以改进大分子结构。开发的方法在一个新的程序MetalCoord中实现,该程序对金属配位几何进行分类和利用。使用PDB中的含金属组件测试了所开发算法的有效性。因此,CCP4单体库中的含金属组分已经更新。更新的单体字典,与衍生的约束相一致,可以用于大多数结构生物学计算,包括大分子晶体学,单粒子低温电镜,甚至分子力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving macromolecular structure refinement with metal-coordination restraints.

Metals are essential components for the structure and function of many proteins. However, accurate modelling of their coordination environments remains a challenge due to the complexity and diversity of metal-coordination geometries. To address this, a method is presented for extracting and analysing coordination information, including bond lengths and angles, from the Crystallography Open Database. By using these data, comprehensive descriptions of metal-containing components are generated. A stereochemical information generator for a particular component within a specific macromolecule leverages an example PDB/mmCIF file containing the component to account for the actual surrounding environment. A matching process has been developed and implemented to align the derived metal structures with idealized coordinates from a coordination geometry library. Additionally, various strategies, depending on the quality of the matches, were employed to compile distance and angle statistics for the refinement of macromolecular structures. The developed methods were implemented in a new program, MetalCoord, that classifies and utilizes the metal-coordination geometry. The effectiveness of the developed algorithms was tested using metal-containing components from the PDB. As a result, metal-containing components from the CCP4 monomer library have been updated. The updated monomer dictionaries, in concert with the derived restraints, can be used in most structural biology computations, including macromolecular crystallography, single-particle cryo-EM and even molecular mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Crystallographica. Section D, Structural Biology
Acta Crystallographica. Section D, Structural Biology BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
4.50
自引率
13.60%
发文量
216
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信