{"title":"采用电子鼻、HS-GC-IMS和HS-SPME-GC-MS对不同贮存时间白茶的挥发性物质特征进行分析。","authors":"Haoran Huang, Xinyu Chen, Ying Wang, Ye Cheng, Zhijian Liu, Yunchao Hu, Xianzhi Wu, Caie Wu, Zhixin Xiong","doi":"10.1111/1750-3841.17535","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studied the influence of storage duration on the flavor profile of white tea in detail, with samples produced between 2020 and 2023. Sensory evaluation was performed by quantitative descriptive analysis (QDA), followed by an in-depth aroma components analysis employing an electronic nose (E-nose), headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The QDA findings revealed a gradual transition in the flavor profile of white tea during storage, shifting from sweet, fruity, and floral to more herbal and stale characteristics. E-nose could well distinguish white tea with different storage times. A total of 55 and 53 volatile compounds were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. The orthogonal partial least squares-discriminant analysis models, based on HS-GC-IMS (R<sup>2</sup>Y = 0.998, Q<sup>2 </sup>= 0.987) and HS-SPME-GC-MS (R<sup>2</sup>Y = 0.984, Q<sup>2</sup> = 0.993), successfully distinguished white tea samples stored for different storage times. Furthermore, 14 and 8 key compounds were screened based on the double variable criterion of one-way analysis of variance (p < 0.05) and variable importance in projection (VIP) >1.2, and their content changes were also compared. It is the gradual decrease of important aroma components such as 2-hexenal, 2-methyl-2-hepten-6-one, linalool, and geraniol, which are positively correlated with sweet, fruity, and floral aromas, and the gradual increase of hexanoic acid, thiophene, propanoic acid, dimethyl disulfide, and borneyl acetate, which are positively correlated with herbal and stale flavor, that leads to the changes in flavor and aroma of white tea during storage. The results of the study provided a reference for elucidating the aroma characteristics of white tea at different storage times as well as a theoretical basis for the quality control of white tea.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":"9137-9153"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristic volatile compounds of white tea with different storage times using E-nose, HS-GC-IMS, and HS-SPME-GC-MS.\",\"authors\":\"Haoran Huang, Xinyu Chen, Ying Wang, Ye Cheng, Zhijian Liu, Yunchao Hu, Xianzhi Wu, Caie Wu, Zhixin Xiong\",\"doi\":\"10.1111/1750-3841.17535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper studied the influence of storage duration on the flavor profile of white tea in detail, with samples produced between 2020 and 2023. Sensory evaluation was performed by quantitative descriptive analysis (QDA), followed by an in-depth aroma components analysis employing an electronic nose (E-nose), headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The QDA findings revealed a gradual transition in the flavor profile of white tea during storage, shifting from sweet, fruity, and floral to more herbal and stale characteristics. E-nose could well distinguish white tea with different storage times. A total of 55 and 53 volatile compounds were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. The orthogonal partial least squares-discriminant analysis models, based on HS-GC-IMS (R<sup>2</sup>Y = 0.998, Q<sup>2 </sup>= 0.987) and HS-SPME-GC-MS (R<sup>2</sup>Y = 0.984, Q<sup>2</sup> = 0.993), successfully distinguished white tea samples stored for different storage times. Furthermore, 14 and 8 key compounds were screened based on the double variable criterion of one-way analysis of variance (p < 0.05) and variable importance in projection (VIP) >1.2, and their content changes were also compared. It is the gradual decrease of important aroma components such as 2-hexenal, 2-methyl-2-hepten-6-one, linalool, and geraniol, which are positively correlated with sweet, fruity, and floral aromas, and the gradual increase of hexanoic acid, thiophene, propanoic acid, dimethyl disulfide, and borneyl acetate, which are positively correlated with herbal and stale flavor, that leads to the changes in flavor and aroma of white tea during storage. The results of the study provided a reference for elucidating the aroma characteristics of white tea at different storage times as well as a theoretical basis for the quality control of white tea.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":\" \",\"pages\":\"9137-9153\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1750-3841.17535\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17535","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Characteristic volatile compounds of white tea with different storage times using E-nose, HS-GC-IMS, and HS-SPME-GC-MS.
This paper studied the influence of storage duration on the flavor profile of white tea in detail, with samples produced between 2020 and 2023. Sensory evaluation was performed by quantitative descriptive analysis (QDA), followed by an in-depth aroma components analysis employing an electronic nose (E-nose), headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The QDA findings revealed a gradual transition in the flavor profile of white tea during storage, shifting from sweet, fruity, and floral to more herbal and stale characteristics. E-nose could well distinguish white tea with different storage times. A total of 55 and 53 volatile compounds were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. The orthogonal partial least squares-discriminant analysis models, based on HS-GC-IMS (R2Y = 0.998, Q2 = 0.987) and HS-SPME-GC-MS (R2Y = 0.984, Q2 = 0.993), successfully distinguished white tea samples stored for different storage times. Furthermore, 14 and 8 key compounds were screened based on the double variable criterion of one-way analysis of variance (p < 0.05) and variable importance in projection (VIP) >1.2, and their content changes were also compared. It is the gradual decrease of important aroma components such as 2-hexenal, 2-methyl-2-hepten-6-one, linalool, and geraniol, which are positively correlated with sweet, fruity, and floral aromas, and the gradual increase of hexanoic acid, thiophene, propanoic acid, dimethyl disulfide, and borneyl acetate, which are positively correlated with herbal and stale flavor, that leads to the changes in flavor and aroma of white tea during storage. The results of the study provided a reference for elucidating the aroma characteristics of white tea at different storage times as well as a theoretical basis for the quality control of white tea.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.