自噬和akt刺激的细胞增殖协同提高CHO细胞的抗体产生

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Leran Mao, Sarah Michelle Sonbati, James W. Schneider, Anne S. Robinson
{"title":"自噬和akt刺激的细胞增殖协同提高CHO细胞的抗体产生","authors":"Leran Mao,&nbsp;Sarah Michelle Sonbati,&nbsp;James W. Schneider,&nbsp;Anne S. Robinson","doi":"10.1002/biot.202400033","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400033","citationCount":"0","resultStr":"{\"title\":\"Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells\",\"authors\":\"Leran Mao,&nbsp;Sarah Michelle Sonbati,&nbsp;James W. Schneider,&nbsp;Anne S. Robinson\",\"doi\":\"10.1002/biot.202400033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.</p>\",\"PeriodicalId\":134,\"journal\":{\"name\":\"Biotechnology Journal\",\"volume\":\"19 11\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/biot.202400033\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,基于对影响细胞健康和蛋白质生产的细胞机制的更好理解,工程生产细胞系使抗体产量增加了10倍。随着产量的进一步提高,抗体产量的增加将大大降低挽救生命的疗法的成本。在本研究中,我们制定了提高细胞活力和细胞培养时间的方法,以提高生产寿命。通过过表达细胞表面腺苷A2A受体(A2AR),激活Akt通路,促进细胞增殖。另外,通过降低温度诱导自噬,我们能够显著提高细胞特异性生产力,总抗体产量增加三倍,细胞特异性生产力提高三倍。有趣的是,自噬途径蛋白Beclin-1的表达水平似乎与自噬相关蛋白的总抗体产生最相关。因此,在细胞克隆发育过程中,Beclin-1水平可以作为筛选优化抗体滴度条件的标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells

Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells

Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A2A receptor (A2AR), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信