C. Grant , S. Roongta , T.L. Burnett , P.B. Prangnell , P. Shanthraj
{"title":"用化学-力学相场耦合损伤模型模拟铝合金氢控制裂纹扩展动力学","authors":"C. Grant , S. Roongta , T.L. Burnett , P.B. Prangnell , P. Shanthraj","doi":"10.1016/j.actamat.2024.120597","DOIUrl":null,"url":null,"abstract":"<div><div>Environmentally Assisted Cracking (EAC) of 7xxx series aluminium alloys involves interactions between multiple physical phenomena, which ultimately influence the in-service life of critical components. In this work, we present a new model to study EAC in 7xxx series alloys, which is implemented in the multiphysics simulation framework, DAMASK. The chemo-mechanical model couples crack tip hydrogen generation, resulting from surface oxidation, and transport, with crystal-plasticity-governed intergranular crack propagation, through the microstructural trapping of hydrogen at dislocations, grain boundaries (GB), and crack tip stress fields. Large-scale simulations with realistic grain structures have been performed to provide novel insight into the dominant rate-controlling processes associated with intergranular EAC in 7xxx series aluminium alloys. The model was able to reproduce experimentally measured crack velocities under different loading conditions. Parametric studies indicate that, in addition to the GB network morphology, the crack growth rate was controlled by hydrogen generation at the crack tip with long-range diffusion having negligible influence. Additionally, the total hydrogen generated through crack tip oxidation appears to be more significant than the peak generation rate.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"284 ","pages":"Article 120597"},"PeriodicalIF":8.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating hydrogen-controlled crack growth kinetics in Al-alloys using a coupled chemo-mechanical phase-field damage model\",\"authors\":\"C. Grant , S. Roongta , T.L. Burnett , P.B. Prangnell , P. Shanthraj\",\"doi\":\"10.1016/j.actamat.2024.120597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Environmentally Assisted Cracking (EAC) of 7xxx series aluminium alloys involves interactions between multiple physical phenomena, which ultimately influence the in-service life of critical components. In this work, we present a new model to study EAC in 7xxx series alloys, which is implemented in the multiphysics simulation framework, DAMASK. The chemo-mechanical model couples crack tip hydrogen generation, resulting from surface oxidation, and transport, with crystal-plasticity-governed intergranular crack propagation, through the microstructural trapping of hydrogen at dislocations, grain boundaries (GB), and crack tip stress fields. Large-scale simulations with realistic grain structures have been performed to provide novel insight into the dominant rate-controlling processes associated with intergranular EAC in 7xxx series aluminium alloys. The model was able to reproduce experimentally measured crack velocities under different loading conditions. Parametric studies indicate that, in addition to the GB network morphology, the crack growth rate was controlled by hydrogen generation at the crack tip with long-range diffusion having negligible influence. Additionally, the total hydrogen generated through crack tip oxidation appears to be more significant than the peak generation rate.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"284 \",\"pages\":\"Article 120597\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645424009455\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424009455","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulating hydrogen-controlled crack growth kinetics in Al-alloys using a coupled chemo-mechanical phase-field damage model
Environmentally Assisted Cracking (EAC) of 7xxx series aluminium alloys involves interactions between multiple physical phenomena, which ultimately influence the in-service life of critical components. In this work, we present a new model to study EAC in 7xxx series alloys, which is implemented in the multiphysics simulation framework, DAMASK. The chemo-mechanical model couples crack tip hydrogen generation, resulting from surface oxidation, and transport, with crystal-plasticity-governed intergranular crack propagation, through the microstructural trapping of hydrogen at dislocations, grain boundaries (GB), and crack tip stress fields. Large-scale simulations with realistic grain structures have been performed to provide novel insight into the dominant rate-controlling processes associated with intergranular EAC in 7xxx series aluminium alloys. The model was able to reproduce experimentally measured crack velocities under different loading conditions. Parametric studies indicate that, in addition to the GB network morphology, the crack growth rate was controlled by hydrogen generation at the crack tip with long-range diffusion having negligible influence. Additionally, the total hydrogen generated through crack tip oxidation appears to be more significant than the peak generation rate.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.