Alban Joseph, Jayakrishnan M. P. Nair, Mawgan A. Smith, Rory Holland, Luke J. McLellan, Isabella Boventer, Tim Wolz, Dmytro A. Bozhko, Benedetta Flebus, Martin P. Weides, Rair Macêdo
{"title":"激励矢量场和全极化状态控制在腔磁力学中的作用","authors":"Alban Joseph, Jayakrishnan M. P. Nair, Mawgan A. Smith, Rory Holland, Luke J. McLellan, Isabella Boventer, Tim Wolz, Dmytro A. Bozhko, Benedetta Flebus, Martin P. Weides, Rair Macêdo","doi":"10.1038/s44306-024-00062-z","DOIUrl":null,"url":null,"abstract":"Recently the field of cavity magnonics, a field focused on controlling the interaction between magnons and photons confined within microwave resonators, has drawn significant attention as it offers a platform for enabling advancements in quantum- and spin-based technologies. Here, we introduce excitation vector fields, whose polarisation and profile can be easily tuned in a two-port cavity setup, thus acting as an effective experimental dial to explore the coupled dynamics of cavity magnon-polaritons. Moreover, we develop theoretical models that accurately predict and reproduce the experimental results for any polarisation state and field profile within the cavity resonator. This versatile experimental platform offers a new avenue for controlling spin-photon interactions by manipulating the polarisation of excitation fields. By introducing real-time tunable parameters that control the polarisation state, our experiment delivers a mechanism to readily control the exchange of information between hybrid systems.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00062-z.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of excitation vector fields and all-polarisation state control in cavity magnonics\",\"authors\":\"Alban Joseph, Jayakrishnan M. P. Nair, Mawgan A. Smith, Rory Holland, Luke J. McLellan, Isabella Boventer, Tim Wolz, Dmytro A. Bozhko, Benedetta Flebus, Martin P. Weides, Rair Macêdo\",\"doi\":\"10.1038/s44306-024-00062-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently the field of cavity magnonics, a field focused on controlling the interaction between magnons and photons confined within microwave resonators, has drawn significant attention as it offers a platform for enabling advancements in quantum- and spin-based technologies. Here, we introduce excitation vector fields, whose polarisation and profile can be easily tuned in a two-port cavity setup, thus acting as an effective experimental dial to explore the coupled dynamics of cavity magnon-polaritons. Moreover, we develop theoretical models that accurately predict and reproduce the experimental results for any polarisation state and field profile within the cavity resonator. This versatile experimental platform offers a new avenue for controlling spin-photon interactions by manipulating the polarisation of excitation fields. By introducing real-time tunable parameters that control the polarisation state, our experiment delivers a mechanism to readily control the exchange of information between hybrid systems.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00062-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00062-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00062-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The role of excitation vector fields and all-polarisation state control in cavity magnonics
Recently the field of cavity magnonics, a field focused on controlling the interaction between magnons and photons confined within microwave resonators, has drawn significant attention as it offers a platform for enabling advancements in quantum- and spin-based technologies. Here, we introduce excitation vector fields, whose polarisation and profile can be easily tuned in a two-port cavity setup, thus acting as an effective experimental dial to explore the coupled dynamics of cavity magnon-polaritons. Moreover, we develop theoretical models that accurately predict and reproduce the experimental results for any polarisation state and field profile within the cavity resonator. This versatile experimental platform offers a new avenue for controlling spin-photon interactions by manipulating the polarisation of excitation fields. By introducing real-time tunable parameters that control the polarisation state, our experiment delivers a mechanism to readily control the exchange of information between hybrid systems.