Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai
{"title":"水余辉色散实现汞离子的现场比例传感(Advanced Optical Materials 34/2024)","authors":"Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai","doi":"10.1002/adom.202470111","DOIUrl":null,"url":null,"abstract":"<p><b>Aqueous Afterglow Dispersion Enabling Mercury Ion Sensing</b></p><p>This cover image illustrates the application of an aqueous-phase phosphorescent probe for the detection of heavy metal ions. The carbon dots (CDs)@hydrogen-bonded organic frameworks (HOFs) composite material functions as the energy donor, while a rhodamine B derivative acts as metal ions probe and the energy acceptor, facilitating the phosphorescent detection of mercury ions in aqueous environments via a Förster energy transfer mechanism. This approach highlights the potential of aqueous phosphorescent materials for environmental monitoring and analytical applications. For further details, see article number 2401509 by Guangqiang Yin, Tao Chen, Zhixiong Cai, and co-workers.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 34","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470111","citationCount":"0","resultStr":"{\"title\":\"Aqueous Afterglow Dispersion Enabling On-Site Ratiometric Sensing of Mercury Ions (Advanced Optical Materials 34/2024)\",\"authors\":\"Minjuan Cai, Wuzhen Luo, Feiming Li, Shunyou Cai, Guangqiang Yin, Tao Chen, Zhixiong Cai\",\"doi\":\"10.1002/adom.202470111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Aqueous Afterglow Dispersion Enabling Mercury Ion Sensing</b></p><p>This cover image illustrates the application of an aqueous-phase phosphorescent probe for the detection of heavy metal ions. The carbon dots (CDs)@hydrogen-bonded organic frameworks (HOFs) composite material functions as the energy donor, while a rhodamine B derivative acts as metal ions probe and the energy acceptor, facilitating the phosphorescent detection of mercury ions in aqueous environments via a Förster energy transfer mechanism. This approach highlights the potential of aqueous phosphorescent materials for environmental monitoring and analytical applications. For further details, see article number 2401509 by Guangqiang Yin, Tao Chen, Zhixiong Cai, and co-workers.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"12 34\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202470111\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470111\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202470111","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aqueous Afterglow Dispersion Enabling Mercury Ion Sensing
This cover image illustrates the application of an aqueous-phase phosphorescent probe for the detection of heavy metal ions. The carbon dots (CDs)@hydrogen-bonded organic frameworks (HOFs) composite material functions as the energy donor, while a rhodamine B derivative acts as metal ions probe and the energy acceptor, facilitating the phosphorescent detection of mercury ions in aqueous environments via a Förster energy transfer mechanism. This approach highlights the potential of aqueous phosphorescent materials for environmental monitoring and analytical applications. For further details, see article number 2401509 by Guangqiang Yin, Tao Chen, Zhixiong Cai, and co-workers.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.