二项边理想的v数

IF 0.3 Q4 MATHEMATICS
Siddhi Balu Ambhore, Kamalesh Saha, Indranath Sengupta
{"title":"二项边理想的v数","authors":"Siddhi Balu Ambhore,&nbsp;Kamalesh Saha,&nbsp;Indranath Sengupta","doi":"10.1007/s40306-024-00540-w","DOIUrl":null,"url":null,"abstract":"<div><p>The invariant <span>\\(\\textrm{v}\\)</span>-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the <span>\\(\\textrm{v}\\)</span>-number of edge ideals. Inspired by their work, we take the initiation to study the <span>\\(\\textrm{v}\\)</span>-number of binomial edge ideals in this paper. We discuss some properties and bounds of the <span>\\(\\textrm{v}\\)</span>-number of binomial edge ideals. We explicitly find the <span>\\(\\textrm{v}\\)</span>-number of binomial edge ideals locally at the associated prime corresponding to the cutset <span>\\(\\emptyset \\)</span>. We show that the <span>\\(\\textrm{v}\\)</span>-number of Knutson binomial edge ideals is less than or equal to the <span>\\(\\textrm{v}\\)</span>-number of their initial ideals. Also, we classify all binomial edge ideals whose <span>\\(\\textrm{v}\\)</span>-number is 1. Moreover, we try to relate the <span>\\(\\textrm{v}\\)</span>-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 4","pages":"611 - 628"},"PeriodicalIF":0.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The v-Number of Binomial Edge Ideals\",\"authors\":\"Siddhi Balu Ambhore,&nbsp;Kamalesh Saha,&nbsp;Indranath Sengupta\",\"doi\":\"10.1007/s40306-024-00540-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The invariant <span>\\\\(\\\\textrm{v}\\\\)</span>-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of edge ideals. Inspired by their work, we take the initiation to study the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of binomial edge ideals in this paper. We discuss some properties and bounds of the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of binomial edge ideals. We explicitly find the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of binomial edge ideals locally at the associated prime corresponding to the cutset <span>\\\\(\\\\emptyset \\\\)</span>. We show that the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of Knutson binomial edge ideals is less than or equal to the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of their initial ideals. Also, we classify all binomial edge ideals whose <span>\\\\(\\\\textrm{v}\\\\)</span>-number is 1. Moreover, we try to relate the <span>\\\\(\\\\textrm{v}\\\\)</span>-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 4\",\"pages\":\"611 - 628\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00540-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00540-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

不变量\(\textrm{v}\) -数是最近在reed - muller型码的研究中引入的。哈拉米略和比利亚雷亚尔(J. Combin)。理论SerA 177:105310, 2021)开始了对\(\textrm{v}\) -边缘理想数的研究。受他们工作的启发,本文开始研究\(\textrm{v}\) -数目的二项边理想。讨论了二项边理想\(\textrm{v}\) -数的一些性质和界。我们明确地找到了与割集\(\emptyset \)相对应的关联素数处局部二项式边理想的\(\textrm{v}\) -个数。我们证明了克努森二项边缘理想的\(\textrm{v}\) -个数小于或等于它们的初始理想的\(\textrm{v}\) -个数。同时,对\(\textrm{v}\) -number为1的所有二项边理想进行分类。此外,我们尝试将\(\textrm{v}\) -数与二项边理想的Castelnuvo-Mumford正则性联系起来,并给出了这个方向上的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The v-Number of Binomial Edge Ideals

The v-Number of Binomial Edge Ideals

The invariant \(\textrm{v}\)-number was introduced very recently in the study of Reed-Muller-type codes. Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of the \(\textrm{v}\)-number of edge ideals. Inspired by their work, we take the initiation to study the \(\textrm{v}\)-number of binomial edge ideals in this paper. We discuss some properties and bounds of the \(\textrm{v}\)-number of binomial edge ideals. We explicitly find the \(\textrm{v}\)-number of binomial edge ideals locally at the associated prime corresponding to the cutset \(\emptyset \). We show that the \(\textrm{v}\)-number of Knutson binomial edge ideals is less than or equal to the \(\textrm{v}\)-number of their initial ideals. Also, we classify all binomial edge ideals whose \(\textrm{v}\)-number is 1. Moreover, we try to relate the \(\textrm{v}\)-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a conjecture in this direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
23
期刊介绍: Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信