智利/阿根廷安第斯南火山区Sollipulli火山alpehu tephra岩浆演化及岩浆室条件

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Armin Freundt, Karen Strehlow, Steffen Kutterolf, Julie Christin Schindlbeck-Belo
{"title":"智利/阿根廷安第斯南火山区Sollipulli火山alpehu<s:1> tephra岩浆演化及岩浆室条件","authors":"Armin Freundt,&nbsp;Karen Strehlow,&nbsp;Steffen Kutterolf,&nbsp;Julie Christin Schindlbeck-Belo","doi":"10.1007/s00410-024-02195-0","DOIUrl":null,"url":null,"abstract":"<div><p>The trachydacitic Alpehué tephra from Sollipulli volcano (Andean Southern Volcanic Zone), consists of ignimbrite and fallout from a Plinian eruption about 3000 years ago. It is mainly composed of (1) crystal-rich pumice and ash but also contains (2) chilled knobbly basaltic lava clasts and (3) mostly highly inflated glomerocrystic fragments with high crystal-glass ratios interpreted to represent a crystal mush zoned from basaltic to dacitic bulk compositions. Knobbly lava clasts are of three types: (a) a very phenocryst-poor basalt, (b) a basalt with large, unzoned olivine and plagioclase phenocrysts and glomerocrysts, and (c) mixtures of microcrystalline basalt with various fragments, glomerocrysts and crystals derived from a crystal mush. Clast type (4) in the tephra is banded pumices in which the three magmatic components occur variably mingled. Thermobarometry and petrographic observations, particularly presence or absence of amphibole, constrain an upper-crustal succession of a lower basaltic reservoir, a zoned basaltic to dacitic crystal mush reservoir, and a separate trachydacite magma chamber on top. All Alpehué magmatic components form a coherent liquid line of descent which supports the interpretation that the crystal mush reservoir is a gradually solidifying magma chamber, not the result of large-scale crystal-liquid segregation. The trachydacite magma may originally have formed as melt escaping from the crystal-mush reservoir but subsequently underwent a long and complex evolution recorded in large strongly zoned plagioclase phenocrysts including resorption horizons. The ascending mafic magmas collected samples from the crystal mush body and intruded the trachydacite reservoir. The phenocryst-poor basalt (a) arrived first and entrained and partially resorbed plagioclase from the host magma. The phyric basalt (b) arrived later and did not resorb entrained plagioclase before eruption. Estimated cooling times, plagioclase resorption times and ascent rates avoiding amphibole breakdown limit the duration of these pre-eruptive processes to not more than a few days.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"180 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02195-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Magmatic evolution and magma chamber conditions of the Alpehué tephra from Sollipulli Volcano, Andean Southern Volcanic Zone, Chile/Argentina\",\"authors\":\"Armin Freundt,&nbsp;Karen Strehlow,&nbsp;Steffen Kutterolf,&nbsp;Julie Christin Schindlbeck-Belo\",\"doi\":\"10.1007/s00410-024-02195-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The trachydacitic Alpehué tephra from Sollipulli volcano (Andean Southern Volcanic Zone), consists of ignimbrite and fallout from a Plinian eruption about 3000 years ago. It is mainly composed of (1) crystal-rich pumice and ash but also contains (2) chilled knobbly basaltic lava clasts and (3) mostly highly inflated glomerocrystic fragments with high crystal-glass ratios interpreted to represent a crystal mush zoned from basaltic to dacitic bulk compositions. Knobbly lava clasts are of three types: (a) a very phenocryst-poor basalt, (b) a basalt with large, unzoned olivine and plagioclase phenocrysts and glomerocrysts, and (c) mixtures of microcrystalline basalt with various fragments, glomerocrysts and crystals derived from a crystal mush. Clast type (4) in the tephra is banded pumices in which the three magmatic components occur variably mingled. Thermobarometry and petrographic observations, particularly presence or absence of amphibole, constrain an upper-crustal succession of a lower basaltic reservoir, a zoned basaltic to dacitic crystal mush reservoir, and a separate trachydacite magma chamber on top. All Alpehué magmatic components form a coherent liquid line of descent which supports the interpretation that the crystal mush reservoir is a gradually solidifying magma chamber, not the result of large-scale crystal-liquid segregation. The trachydacite magma may originally have formed as melt escaping from the crystal-mush reservoir but subsequently underwent a long and complex evolution recorded in large strongly zoned plagioclase phenocrysts including resorption horizons. The ascending mafic magmas collected samples from the crystal mush body and intruded the trachydacite reservoir. The phenocryst-poor basalt (a) arrived first and entrained and partially resorbed plagioclase from the host magma. The phyric basalt (b) arrived later and did not resorb entrained plagioclase before eruption. Estimated cooling times, plagioclase resorption times and ascent rates avoiding amphibole breakdown limit the duration of these pre-eruptive processes to not more than a few days.</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"180 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00410-024-02195-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02195-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02195-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

来自索利普利火山(安第斯南部火山带)的粗灰质alpehu tephra,由3000年前普林尼火山喷发的火成岩和沉降物组成。它主要由(1)富含晶体的浮石和灰岩组成,但也含有(2)冷裂的玄武岩熔岩碎屑和(3)大部分高度膨胀的球状结晶碎片,具有高晶玻璃比,被解释为从玄武岩到英安岩的大块成分的晶体糊状物。结节状熔岩碎屑有三种类型:(a)玄武岩斑晶含量极低,(b)玄武岩中有大型无分区橄榄石和斜长石斑晶和球晶,以及(c)微晶玄武岩与各种碎片、球晶和来自晶体糊状的晶体的混合物。岩屑类型(4)为带状浮石,其中三种岩浆组分不同程度地混合在一起。热气压测量和岩石学观察,特别是角闪洞的存在与否,限制了下玄武岩储层的地壳上演替,玄武岩到英安岩的分带结晶泥储层,以及顶部单独的径英安岩岩浆房。所有alpehu岩浆成分形成了一条连贯的液体下降线,这支持了晶体糊状储层是一个逐渐凝固的岩浆房的解释,而不是大规模晶体-液体分离的结果。粗英安岩岩浆最初可能是作为熔融体从结晶浆液储层中逸出而形成的,但随后经历了漫长而复杂的演化,形成了包括吸收层在内的大型强分带斜长石斑晶。上升的基性岩浆从结晶泥体中采集样品,侵入粗面英石岩储层。贫斑晶玄武岩(a)首先到达,从寄主岩浆中夹带并部分吸收斜长石。植生玄武岩(b)到达较晚,在喷发前未吸收夹带斜长石。估计的冷却时间、斜长石吸收时间和避免角闪孔破裂的上升速度限制了这些喷发前过程的持续时间不超过几天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magmatic evolution and magma chamber conditions of the Alpehué tephra from Sollipulli Volcano, Andean Southern Volcanic Zone, Chile/Argentina

The trachydacitic Alpehué tephra from Sollipulli volcano (Andean Southern Volcanic Zone), consists of ignimbrite and fallout from a Plinian eruption about 3000 years ago. It is mainly composed of (1) crystal-rich pumice and ash but also contains (2) chilled knobbly basaltic lava clasts and (3) mostly highly inflated glomerocrystic fragments with high crystal-glass ratios interpreted to represent a crystal mush zoned from basaltic to dacitic bulk compositions. Knobbly lava clasts are of three types: (a) a very phenocryst-poor basalt, (b) a basalt with large, unzoned olivine and plagioclase phenocrysts and glomerocrysts, and (c) mixtures of microcrystalline basalt with various fragments, glomerocrysts and crystals derived from a crystal mush. Clast type (4) in the tephra is banded pumices in which the three magmatic components occur variably mingled. Thermobarometry and petrographic observations, particularly presence or absence of amphibole, constrain an upper-crustal succession of a lower basaltic reservoir, a zoned basaltic to dacitic crystal mush reservoir, and a separate trachydacite magma chamber on top. All Alpehué magmatic components form a coherent liquid line of descent which supports the interpretation that the crystal mush reservoir is a gradually solidifying magma chamber, not the result of large-scale crystal-liquid segregation. The trachydacite magma may originally have formed as melt escaping from the crystal-mush reservoir but subsequently underwent a long and complex evolution recorded in large strongly zoned plagioclase phenocrysts including resorption horizons. The ascending mafic magmas collected samples from the crystal mush body and intruded the trachydacite reservoir. The phenocryst-poor basalt (a) arrived first and entrained and partially resorbed plagioclase from the host magma. The phyric basalt (b) arrived later and did not resorb entrained plagioclase before eruption. Estimated cooling times, plagioclase resorption times and ascent rates avoiding amphibole breakdown limit the duration of these pre-eruptive processes to not more than a few days.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信