嗜热菌fusca Cel6B在降解纤维素的过程中进行双向移动

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Madeline M. Johnson, Antonio DeChellis, Bhargava Nemmaru, Shishir P. S. Chundawat, Matthew J. Lang
{"title":"嗜热菌fusca Cel6B在降解纤维素的过程中进行双向移动","authors":"Madeline M. Johnson,&nbsp;Antonio DeChellis,&nbsp;Bhargava Nemmaru,&nbsp;Shishir P. S. Chundawat,&nbsp;Matthew J. Lang","doi":"10.1186/s13068-024-02588-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Cellulose, an abundant biopolymer, has great potential to be utilized as a renewable fuel feedstock through its enzymatic degradation into soluble sugars followed by sugar fermentation into liquid biofuels. However, crystalline cellulose is highly resistant to hydrolysis, thus industrial-scale production of cellulosic biofuels has been cost-prohibitive to date. Mechanistic studies of enzymes that break down cellulose, called cellulases, are necessary to improve and adapt such biocatalysts for implementation in biofuel production processes. <i>Thermobifida fusca</i> Cel6B (<i>Tf</i>Cel6B) is a promising candidate for industrial use due to its thermostability and insensitivity to pH changes. However, mechanistic studies probing <i>Tf</i>Cel6B hydrolytic activity have been limited to ensemble-scale measurements.</p><h3>Results</h3><p>We utilized optical tweezers to perform single-molecule, nanometer-scale measurements of enzyme displacement during cellulose hydrolysis by <i>Tf</i>Cel6B. Records featured forward motility on the order of 0.17 nm s<sup>−1</sup> interrupted by backward motions and long pauses. Processive run lengths were on the order of 5 nm in both forward and backward directions. Motility records also showed rapid bidirectional displacements greater than 5 nm. Single-enzyme velocity and bulk ensemble activity were assayed on multiple crystalline cellulose allomorphs revealing that the degree of crystallinity and hydrogen bonding have disparate effects on the single-molecule level compared to the bulk scale. Additionally, we isolated and monitored the catalytic domain of <i>Tf</i>Cel6B and observed a reduction in velocity compared to the full-length enzyme that includes the carbohydrate-binding module. Applied force has little impact on enzyme velocity yet it readily facilitates dissociation from cellulose. Preliminary measurements at elevated temperatures indicated enzyme velocity strongly increases with temperature.</p><h3>Conclusions</h3><p>The unexpected motility patterns of <i>Tf</i>Cel6B are likely due to previously unknown mechanisms of processive cellulase motility implicating irregularities in cellulose substrate ultrastructure. While <i>Tf</i>Cel6B is processive, it has low motility at room temperature. Factors that most dramatically impact enzyme velocity are temperature and the presence of its native carbohydrate-binding module and linker. In contrast, substrate ultrastructure and applied force did not greatly impact velocity. These findings motivate further study of <i>Tf</i>Cel6B for its engineering and potential implementation in industrial processes.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02588-0","citationCount":"0","resultStr":"{\"title\":\"Thermobifida fusca Cel6B moves bidirectionally while processively degrading cellulose\",\"authors\":\"Madeline M. Johnson,&nbsp;Antonio DeChellis,&nbsp;Bhargava Nemmaru,&nbsp;Shishir P. S. Chundawat,&nbsp;Matthew J. Lang\",\"doi\":\"10.1186/s13068-024-02588-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Cellulose, an abundant biopolymer, has great potential to be utilized as a renewable fuel feedstock through its enzymatic degradation into soluble sugars followed by sugar fermentation into liquid biofuels. However, crystalline cellulose is highly resistant to hydrolysis, thus industrial-scale production of cellulosic biofuels has been cost-prohibitive to date. Mechanistic studies of enzymes that break down cellulose, called cellulases, are necessary to improve and adapt such biocatalysts for implementation in biofuel production processes. <i>Thermobifida fusca</i> Cel6B (<i>Tf</i>Cel6B) is a promising candidate for industrial use due to its thermostability and insensitivity to pH changes. However, mechanistic studies probing <i>Tf</i>Cel6B hydrolytic activity have been limited to ensemble-scale measurements.</p><h3>Results</h3><p>We utilized optical tweezers to perform single-molecule, nanometer-scale measurements of enzyme displacement during cellulose hydrolysis by <i>Tf</i>Cel6B. Records featured forward motility on the order of 0.17 nm s<sup>−1</sup> interrupted by backward motions and long pauses. Processive run lengths were on the order of 5 nm in both forward and backward directions. Motility records also showed rapid bidirectional displacements greater than 5 nm. Single-enzyme velocity and bulk ensemble activity were assayed on multiple crystalline cellulose allomorphs revealing that the degree of crystallinity and hydrogen bonding have disparate effects on the single-molecule level compared to the bulk scale. Additionally, we isolated and monitored the catalytic domain of <i>Tf</i>Cel6B and observed a reduction in velocity compared to the full-length enzyme that includes the carbohydrate-binding module. Applied force has little impact on enzyme velocity yet it readily facilitates dissociation from cellulose. Preliminary measurements at elevated temperatures indicated enzyme velocity strongly increases with temperature.</p><h3>Conclusions</h3><p>The unexpected motility patterns of <i>Tf</i>Cel6B are likely due to previously unknown mechanisms of processive cellulase motility implicating irregularities in cellulose substrate ultrastructure. While <i>Tf</i>Cel6B is processive, it has low motility at room temperature. Factors that most dramatically impact enzyme velocity are temperature and the presence of its native carbohydrate-binding module and linker. In contrast, substrate ultrastructure and applied force did not greatly impact velocity. These findings motivate further study of <i>Tf</i>Cel6B for its engineering and potential implementation in industrial processes.</p></div>\",\"PeriodicalId\":494,\"journal\":{\"name\":\"Biotechnology for Biofuels\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02588-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13068-024-02588-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02588-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素是一种丰富的生物聚合物,其酶解降解为可溶性糖,再经糖发酵制成液体生物燃料,具有很大的可再生燃料原料潜力。然而,结晶纤维素高度耐水解,因此迄今为止,纤维素生物燃料的工业规模生产成本过高。对分解纤维素的酶(称为纤维素酶)进行机理研究,对于改进和调整这种生物催化剂,以便在生物燃料生产过程中实施是必要的。热裂菌fusca Cel6B (TfCel6B)因其热稳定性和对pH变化不敏感而成为工业应用的有前途的候选者。然而,探索TfCel6B水解活性的机理研究仅限于整体尺度的测量。结果我们利用光学镊子对TfCel6B水解纤维素过程中的酶位移进行了单分子、纳米尺度的测量。记录的特征是向前运动约为0.17 nm s−1,被向后运动和长时间停顿打断。在前进和后退方向上,进程运行长度都在5 nm左右。运动记录也显示了大于5 nm的快速双向位移。对多晶纤维素异型物的单酶速度和整体系综活性进行了分析,结果表明,结晶度和氢键在单分子水平上对纤维素异型物的影响不同。此外,我们分离并监测了TfCel6B的催化结构域,并观察到与包含碳水化合物结合模块的全长酶相比,其速度降低。施加的力对酶的速度几乎没有影响,但它很容易促进纤维素的分离。在高温下的初步测量表明,酶的速度随着温度的升高而急剧增加。结论TfCel6B的运动模式可能是由于之前未知的纤维素酶运动机制与纤维素底物超微结构的不规则性有关。而TfCel6B是进程性的,在室温下能动性低。影响酶速度最显著的因素是温度和其天然碳水化合物结合模块和连接体的存在。相比之下,衬底的超微结构和施加的力对速度没有很大的影响。这些发现激发了对TfCel6B的进一步研究,以实现其工程和在工业过程中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermobifida fusca Cel6B moves bidirectionally while processively degrading cellulose

Background

Cellulose, an abundant biopolymer, has great potential to be utilized as a renewable fuel feedstock through its enzymatic degradation into soluble sugars followed by sugar fermentation into liquid biofuels. However, crystalline cellulose is highly resistant to hydrolysis, thus industrial-scale production of cellulosic biofuels has been cost-prohibitive to date. Mechanistic studies of enzymes that break down cellulose, called cellulases, are necessary to improve and adapt such biocatalysts for implementation in biofuel production processes. Thermobifida fusca Cel6B (TfCel6B) is a promising candidate for industrial use due to its thermostability and insensitivity to pH changes. However, mechanistic studies probing TfCel6B hydrolytic activity have been limited to ensemble-scale measurements.

Results

We utilized optical tweezers to perform single-molecule, nanometer-scale measurements of enzyme displacement during cellulose hydrolysis by TfCel6B. Records featured forward motility on the order of 0.17 nm s−1 interrupted by backward motions and long pauses. Processive run lengths were on the order of 5 nm in both forward and backward directions. Motility records also showed rapid bidirectional displacements greater than 5 nm. Single-enzyme velocity and bulk ensemble activity were assayed on multiple crystalline cellulose allomorphs revealing that the degree of crystallinity and hydrogen bonding have disparate effects on the single-molecule level compared to the bulk scale. Additionally, we isolated and monitored the catalytic domain of TfCel6B and observed a reduction in velocity compared to the full-length enzyme that includes the carbohydrate-binding module. Applied force has little impact on enzyme velocity yet it readily facilitates dissociation from cellulose. Preliminary measurements at elevated temperatures indicated enzyme velocity strongly increases with temperature.

Conclusions

The unexpected motility patterns of TfCel6B are likely due to previously unknown mechanisms of processive cellulase motility implicating irregularities in cellulose substrate ultrastructure. While TfCel6B is processive, it has low motility at room temperature. Factors that most dramatically impact enzyme velocity are temperature and the presence of its native carbohydrate-binding module and linker. In contrast, substrate ultrastructure and applied force did not greatly impact velocity. These findings motivate further study of TfCel6B for its engineering and potential implementation in industrial processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信