一个关于不连续函数的正确分数微积分的集合

IF 2.5 2区 数学 Q1 MATHEMATICS
Tian Feng, YangQuan Chen
{"title":"一个关于不连续函数的正确分数微积分的集合","authors":"Tian Feng, YangQuan Chen","doi":"10.1007/s13540-024-00356-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an important property of fractional order operators involving discontinuous functions is discussed, First, a pioneering work of impulsive fractional differential equations is recalled to illuminate the incorrectness of notation <span>\\({^C_{t_k}D}^{q}_t\\)</span>. Second, a class of piecewise-defined equations with Caputo fractional derivative is contrastively investigated, and it is revealed that the additivity of integration on intervals for integer-order integral does not hold for fractional integrals, not to mention fractional derivatives. Third, by utilizing the Heaviside step function, an interesting property of fractional integral involving piecewise-defined functions is correspondingly presented. Finally, illustrative examples are given for validation of the derived results, which may lead to a new way to reconsider the dynamic behavior of fractional hybrid systems, as well as discontinuous control design for fractional systems.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"27 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A collection of correct fractional calculus for discontinuous functions\",\"authors\":\"Tian Feng, YangQuan Chen\",\"doi\":\"10.1007/s13540-024-00356-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an important property of fractional order operators involving discontinuous functions is discussed, First, a pioneering work of impulsive fractional differential equations is recalled to illuminate the incorrectness of notation <span>\\\\({^C_{t_k}D}^{q}_t\\\\)</span>. Second, a class of piecewise-defined equations with Caputo fractional derivative is contrastively investigated, and it is revealed that the additivity of integration on intervals for integer-order integral does not hold for fractional integrals, not to mention fractional derivatives. Third, by utilizing the Heaviside step function, an interesting property of fractional integral involving piecewise-defined functions is correspondingly presented. Finally, illustrative examples are given for validation of the derived results, which may lead to a new way to reconsider the dynamic behavior of fractional hybrid systems, as well as discontinuous control design for fractional systems.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00356-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00356-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了涉及不连续函数的分数阶算子的一个重要性质。首先,回顾了脉冲分数阶微分方程的一个开创性工作,阐明了符号\({^C_{t_k}D}^{q}_t\)的不正确性。其次,对一类带有Caputo分数阶导数的分段定义方程进行了对比研究,揭示了整数阶积分在区间上积分的可加性对分数阶积分不成立,更不用说分数阶导数了。第三,利用Heaviside阶跃函数,给出了包含分段函数的分数阶积分的一个有趣性质。最后通过算例验证了所得结果,为重新考虑分数阶混合系统的动力学行为以及分数阶系统的不连续控制设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A collection of correct fractional calculus for discontinuous functions

In this paper, an important property of fractional order operators involving discontinuous functions is discussed, First, a pioneering work of impulsive fractional differential equations is recalled to illuminate the incorrectness of notation \({^C_{t_k}D}^{q}_t\). Second, a class of piecewise-defined equations with Caputo fractional derivative is contrastively investigated, and it is revealed that the additivity of integration on intervals for integer-order integral does not hold for fractional integrals, not to mention fractional derivatives. Third, by utilizing the Heaviside step function, an interesting property of fractional integral involving piecewise-defined functions is correspondingly presented. Finally, illustrative examples are given for validation of the derived results, which may lead to a new way to reconsider the dynamic behavior of fractional hybrid systems, as well as discontinuous control design for fractional systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信