入院时COVID-19严重程度预后的可解释机器学习模型

Q1 Medicine
Antonios T. Tsanakas , Yvonne M. Mueller , Harmen JG. van de Werken , Ricardo Pujol Borrell , Christos A. Ouzounis , Peter D. Katsikis
{"title":"入院时COVID-19严重程度预后的可解释机器学习模型","authors":"Antonios T. Tsanakas ,&nbsp;Yvonne M. Mueller ,&nbsp;Harmen JG. van de Werken ,&nbsp;Ricardo Pujol Borrell ,&nbsp;Christos A. Ouzounis ,&nbsp;Peter D. Katsikis","doi":"10.1016/j.imu.2024.101602","DOIUrl":null,"url":null,"abstract":"<div><div>The coronavirus disease −2019 (COVID-19) pandemic has resulted in serious healthcare challenges. Due to its high transmissibility and hospitalization rates, COVID-19 has led to many deaths and imposed a considerable burden on healthcare systems worldwide. The development of prognostic approaches supporting clinical decisions for hospitalized patients can contribute to better management of the pandemic. We deploy several Artificial Intelligence (AI) techniques to derive COVID-19 severity classification prognosis models for unvaccinated patients hospitalized with mild symptoms using immunological biomarkers. The risk levels are precisely defined, targeting patients with uncertain prognostic trajectories. Forty molecular biomarkers were evaluated for their ability to predict the course of the illness. Seven biomarkers, including IL-6, IL-10, CCL2, LDH, IFNα, ferritin, and anti-SARS-CoV-2 N protein IgA antibody, emerge as the most significant early predictors for the prospective development of severe disease. After applying feature selection, we settled for two complete sets of five and three biomarkers to generate appropriate classification models. A Random Forest model with five biomarkers appears to be the most effective, with an accuracy of 0.92 for the external set. Yet, a Decision Tree model with just three biomarkers, and an accuracy of 0.84 for the external set, provides marginally lower yet robust performance and an explainable structure that broadly reflects our current understanding of disease severity. These findings suggest that the severity is influenced by a few key pathological processes. Therefore, a three-biomarker model that utilizes IL-6, IFNα, and anti-SARS-CoV-2 N protein IgA antibody levels may enhance clinical decision-making and patient triage at hospitalization, contributing to the successful management of the disease.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"52 ","pages":"Article 101602"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An explainable machine learning model for COVID-19 severity prognosis at hospital admission\",\"authors\":\"Antonios T. Tsanakas ,&nbsp;Yvonne M. Mueller ,&nbsp;Harmen JG. van de Werken ,&nbsp;Ricardo Pujol Borrell ,&nbsp;Christos A. Ouzounis ,&nbsp;Peter D. Katsikis\",\"doi\":\"10.1016/j.imu.2024.101602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The coronavirus disease −2019 (COVID-19) pandemic has resulted in serious healthcare challenges. Due to its high transmissibility and hospitalization rates, COVID-19 has led to many deaths and imposed a considerable burden on healthcare systems worldwide. The development of prognostic approaches supporting clinical decisions for hospitalized patients can contribute to better management of the pandemic. We deploy several Artificial Intelligence (AI) techniques to derive COVID-19 severity classification prognosis models for unvaccinated patients hospitalized with mild symptoms using immunological biomarkers. The risk levels are precisely defined, targeting patients with uncertain prognostic trajectories. Forty molecular biomarkers were evaluated for their ability to predict the course of the illness. Seven biomarkers, including IL-6, IL-10, CCL2, LDH, IFNα, ferritin, and anti-SARS-CoV-2 N protein IgA antibody, emerge as the most significant early predictors for the prospective development of severe disease. After applying feature selection, we settled for two complete sets of five and three biomarkers to generate appropriate classification models. A Random Forest model with five biomarkers appears to be the most effective, with an accuracy of 0.92 for the external set. Yet, a Decision Tree model with just three biomarkers, and an accuracy of 0.84 for the external set, provides marginally lower yet robust performance and an explainable structure that broadly reflects our current understanding of disease severity. These findings suggest that the severity is influenced by a few key pathological processes. Therefore, a three-biomarker model that utilizes IL-6, IFNα, and anti-SARS-CoV-2 N protein IgA antibody levels may enhance clinical decision-making and patient triage at hospitalization, contributing to the successful management of the disease.</div></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"52 \",\"pages\":\"Article 101602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S235291482400159X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235291482400159X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)大流行带来了严重的医疗挑战。由于其高传播率和住院率,COVID-19已导致许多人死亡,并给全球卫生保健系统造成了相当大的负担。开发支持住院患者临床决策的预后方法有助于更好地管理大流行。我们采用几种人工智能(AI)技术,利用免疫生物标志物,为未接种疫苗且症状轻微的住院患者建立COVID-19严重程度分类预后模型。风险水平是精确定义的,针对预后轨迹不确定的患者。评估了40种分子生物标志物预测病程的能力。包括IL-6、IL-10、CCL2、LDH、IFNα、铁蛋白和抗sars - cov -2 N蛋白IgA抗体在内的7种生物标志物被认为是严重疾病未来发展的最重要的早期预测指标。在应用特征选择后,我们确定了两组完整的5个和3个生物标志物来生成合适的分类模型。随机森林模型与五个生物标志物似乎是最有效的,其精度为0.92的外部集。然而,只有三个生物标志物的决策树模型,外部集的准确性为0.84,提供了略低但稳健的性能和可解释的结构,广泛反映了我们目前对疾病严重程度的理解。这些发现表明,严重程度受到几个关键病理过程的影响。因此,利用IL-6、IFNα和抗sars - cov - 2n蛋白IgA抗体水平的三生物标志物模型可能会增强临床决策和住院时的患者分诊,有助于成功控制疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An explainable machine learning model for COVID-19 severity prognosis at hospital admission
The coronavirus disease −2019 (COVID-19) pandemic has resulted in serious healthcare challenges. Due to its high transmissibility and hospitalization rates, COVID-19 has led to many deaths and imposed a considerable burden on healthcare systems worldwide. The development of prognostic approaches supporting clinical decisions for hospitalized patients can contribute to better management of the pandemic. We deploy several Artificial Intelligence (AI) techniques to derive COVID-19 severity classification prognosis models for unvaccinated patients hospitalized with mild symptoms using immunological biomarkers. The risk levels are precisely defined, targeting patients with uncertain prognostic trajectories. Forty molecular biomarkers were evaluated for their ability to predict the course of the illness. Seven biomarkers, including IL-6, IL-10, CCL2, LDH, IFNα, ferritin, and anti-SARS-CoV-2 N protein IgA antibody, emerge as the most significant early predictors for the prospective development of severe disease. After applying feature selection, we settled for two complete sets of five and three biomarkers to generate appropriate classification models. A Random Forest model with five biomarkers appears to be the most effective, with an accuracy of 0.92 for the external set. Yet, a Decision Tree model with just three biomarkers, and an accuracy of 0.84 for the external set, provides marginally lower yet robust performance and an explainable structure that broadly reflects our current understanding of disease severity. These findings suggest that the severity is influenced by a few key pathological processes. Therefore, a three-biomarker model that utilizes IL-6, IFNα, and anti-SARS-CoV-2 N protein IgA antibody levels may enhance clinical decision-making and patient triage at hospitalization, contributing to the successful management of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Informatics in Medicine Unlocked
Informatics in Medicine Unlocked Medicine-Health Informatics
CiteScore
9.50
自引率
0.00%
发文量
282
审稿时长
39 days
期刊介绍: Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信