Juncheng Hu , Hongcheng Wang , Guihua Chen , Qingmao Zhang
{"title":"pt对称光学晶格中量子液滴的稳定性和碰撞动力学","authors":"Juncheng Hu , Hongcheng Wang , Guihua Chen , Qingmao Zhang","doi":"10.1016/j.chaos.2024.115837","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the stability and collision dynamics of two-component quantum droplets within the framework of the two-dimensional Gross-Pitaevskii (GP) equation, incorporating PT-symmetric lattice potentials and Lee-Huang-Yang (LHY) correction terms. Through theoretical analysis and numerical simulations, the behavior of two-component quantum droplets in PT-symmetric lattice potentials is elucidated. The study reveals that bell-shaped zero-vortex quantum droplets can form in PT-symmetric lattices, and their stability adheres to the Vakhitov-Kolokolov (VK) criterion. Numerical simulations demonstrate three distinct post-collision states of droplets: coalescence, separation, and evaporation, with the specific outcome depending on the droplets' particle number, initial momentum, and relative phase. Additionally, the quadrupole oscillation mode of the coalesced droplets is examined, revealing a relationship between the oscillation period and the norm. These findings provide significant insights for understanding quantum droplet phenomena and designing related experiments.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"191 ","pages":"Article 115837"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The stability and collision dynamics of quantum droplets in PT-symmetric optical lattices\",\"authors\":\"Juncheng Hu , Hongcheng Wang , Guihua Chen , Qingmao Zhang\",\"doi\":\"10.1016/j.chaos.2024.115837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper explores the stability and collision dynamics of two-component quantum droplets within the framework of the two-dimensional Gross-Pitaevskii (GP) equation, incorporating PT-symmetric lattice potentials and Lee-Huang-Yang (LHY) correction terms. Through theoretical analysis and numerical simulations, the behavior of two-component quantum droplets in PT-symmetric lattice potentials is elucidated. The study reveals that bell-shaped zero-vortex quantum droplets can form in PT-symmetric lattices, and their stability adheres to the Vakhitov-Kolokolov (VK) criterion. Numerical simulations demonstrate three distinct post-collision states of droplets: coalescence, separation, and evaporation, with the specific outcome depending on the droplets' particle number, initial momentum, and relative phase. Additionally, the quadrupole oscillation mode of the coalesced droplets is examined, revealing a relationship between the oscillation period and the norm. These findings provide significant insights for understanding quantum droplet phenomena and designing related experiments.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"191 \",\"pages\":\"Article 115837\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077924013894\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924013894","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The stability and collision dynamics of quantum droplets in PT-symmetric optical lattices
This paper explores the stability and collision dynamics of two-component quantum droplets within the framework of the two-dimensional Gross-Pitaevskii (GP) equation, incorporating PT-symmetric lattice potentials and Lee-Huang-Yang (LHY) correction terms. Through theoretical analysis and numerical simulations, the behavior of two-component quantum droplets in PT-symmetric lattice potentials is elucidated. The study reveals that bell-shaped zero-vortex quantum droplets can form in PT-symmetric lattices, and their stability adheres to the Vakhitov-Kolokolov (VK) criterion. Numerical simulations demonstrate three distinct post-collision states of droplets: coalescence, separation, and evaporation, with the specific outcome depending on the droplets' particle number, initial momentum, and relative phase. Additionally, the quadrupole oscillation mode of the coalesced droplets is examined, revealing a relationship between the oscillation period and the norm. These findings provide significant insights for understanding quantum droplet phenomena and designing related experiments.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.