面向大型语言模型的可解释交通流量预测

IF 12.5 Q1 TRANSPORTATION
Xusen Guo , Qiming Zhang , Junyue Jiang , Mingxing Peng , Meixin Zhu , Hao Frank Yang
{"title":"面向大型语言模型的可解释交通流量预测","authors":"Xusen Guo ,&nbsp;Qiming Zhang ,&nbsp;Junyue Jiang ,&nbsp;Mingxing Peng ,&nbsp;Meixin Zhu ,&nbsp;Hao Frank Yang","doi":"10.1016/j.commtr.2024.100150","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and explainability in traffic prediction models remains a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a traffic flow prediction model based on large language models (LLMs) to generate explainable traffic predictions, named xTP-LLM. By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions. This study contributes to advancing explainable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"4 ","pages":"Article 100150"},"PeriodicalIF":12.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards explainable traffic flow prediction with large language models\",\"authors\":\"Xusen Guo ,&nbsp;Qiming Zhang ,&nbsp;Junyue Jiang ,&nbsp;Mingxing Peng ,&nbsp;Meixin Zhu ,&nbsp;Hao Frank Yang\",\"doi\":\"10.1016/j.commtr.2024.100150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and explainability in traffic prediction models remains a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a traffic flow prediction model based on large language models (LLMs) to generate explainable traffic predictions, named xTP-LLM. By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions. This study contributes to advancing explainable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation.</div></div>\",\"PeriodicalId\":100292,\"journal\":{\"name\":\"Communications in Transportation Research\",\"volume\":\"4 \",\"pages\":\"Article 100150\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Transportation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772424724000337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424724000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

交通预测是智能交通系统的重要组成部分。由于深度学习在捕捉交通数据的潜在模式方面的能力,它已经取得了重大进展。然而,最近的深度学习架构需要复杂的模型设计,并且缺乏对从输入数据到预测结果映射的直观理解。由于交通数据的复杂性和深度学习模型固有的不透明性,在交通预测模型中实现准确性和可解释性仍然是一个挑战。为了解决这些挑战,我们提出了一个基于大型语言模型(llm)的交通流量预测模型,以生成可解释的交通预测,命名为xTP-LLM。通过将多模式交通数据转换为自然语言描述,xTP-LLM从综合交通数据中捕获复杂的时间序列模式和外部因素。LLM框架使用基于语言的指令进行微调,以与时空交通流量数据保持一致。从经验上看,与深度学习基线相比,xTP-LLM显示出具有竞争力的准确性,同时为预测提供了直观可靠的解释。本研究有助于推进可解释的交通预测模型,为未来探索LLM在交通运输中的应用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards explainable traffic flow prediction with large language models
Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and explainability in traffic prediction models remains a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a traffic flow prediction model based on large language models (LLMs) to generate explainable traffic predictions, named xTP-LLM. By transferring multi-modal traffic data into natural language descriptions, xTP-LLM captures complex time-series patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, xTP-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions. This study contributes to advancing explainable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信