不连续函数类中的Radon变换反演公式

IF 0.58 Q3 Engineering
D. S. Anikonov, D. S. Konovalova
{"title":"不连续函数类中的Radon变换反演公式","authors":"D. S. Anikonov,&nbsp;D. S. Konovalova","doi":"10.1134/S1990478924030013","DOIUrl":null,"url":null,"abstract":"<p> We introduce the concept of a pseudoconvex set in an odd-dimensional Euclidean space.\nThe inversion formula is obtained for the Radon transform in the case where the integrand is a\npiecewise continuous function defined on a pseudoconvex set. The result achieved is\na generalization of a previously known property proved for smooth functions.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"18 3","pages":"379 - 383"},"PeriodicalIF":0.5800,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radon Transform Inversion Formula in the Class\\nof Discontinuous Functions\",\"authors\":\"D. S. Anikonov,&nbsp;D. S. Konovalova\",\"doi\":\"10.1134/S1990478924030013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We introduce the concept of a pseudoconvex set in an odd-dimensional Euclidean space.\\nThe inversion formula is obtained for the Radon transform in the case where the integrand is a\\npiecewise continuous function defined on a pseudoconvex set. The result achieved is\\na generalization of a previously known property proved for smooth functions.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"18 3\",\"pages\":\"379 - 383\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478924030013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478924030013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

在奇维欧几里德空间中引入了伪凸集的概念。得到了当被积函数是定义在伪凸集上的连续函数时Radon变换的反演公式。这个结果是对光滑函数的一个已知性质的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radon Transform Inversion Formula in the Class of Discontinuous Functions

We introduce the concept of a pseudoconvex set in an odd-dimensional Euclidean space. The inversion formula is obtained for the Radon transform in the case where the integrand is a piecewise continuous function defined on a pseudoconvex set. The result achieved is a generalization of a previously known property proved for smooth functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信