{"title":"6U立方体卫星EQUULEUS上的水阻喷射推进系统:深空反应控制演示","authors":"Isamu Moriai , Aoma Fujimori , Hokuto Sekine , Hiroyuki Koizumi , Mariko Akiyama , Shunichiro Nomura , Masaya Murohara , Masayuki Matsuura , Ten Arai , Naoto Aizawa , Kento Shirasu , Ryo Minematsu , Yosuke Kawabata , Shintaro Nakajima , Ryota Fuse , Ryu Funase","doi":"10.1016/j.actaastro.2024.11.037","DOIUrl":null,"url":null,"abstract":"<div><div>AQUARIUS (AQUA ResIstojet propUlsion System), a water resistojet propulsion system installed on a 6U CubeSat EQUULEUS (EQUilibriUm Lunar–Earth point 6U Spacecraft), successfully conducted multiple orbital transfers including the world’s first water-fueled propulsion system operation in deep space. We present the on-orbit performance analysis of AQUARIUS with a focus on reaction control thrusters responsible for the spacecraft’s angular momentum management. The reaction control thrusters were capable of producing torques about all axes for angular momentum management as intended. Additionally, they provided fine translational delta-V, demonstrating the thrusters’ dual functionality and reliability in critical maneuvers. The impulse vector of each reaction control thruster was estimated by considering the thrust vector direction. The calculated impulse in the translational axis was about 0.10 N<span><math><mi>⋅</mi></math></span>s per shot, which was validated by comparing the impulse obtained from the Doppler shift of the communication waves. The estimated on-orbit specific impulse of the reaction control thrusters was approximately 78 s, 1.3 times larger than the measured value in the ground test. This improvement on orbit could be due to the degradation of thrust coefficient efficiency in the ground test caused by low Reynolds number flows and high background pressure lowering the apparent pressure thrust. The consumed propellant mass on orbit was estimated but deviated from the expected value under high-temperature conditions, possibly due to temperature measurement uncertainties or the influence of the on-orbit environment.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"227 ","pages":"Pages 114-125"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A water resistojet propulsion system on a 6U CubeSat EQUULEUS: Demonstration of reaction control in deep space\",\"authors\":\"Isamu Moriai , Aoma Fujimori , Hokuto Sekine , Hiroyuki Koizumi , Mariko Akiyama , Shunichiro Nomura , Masaya Murohara , Masayuki Matsuura , Ten Arai , Naoto Aizawa , Kento Shirasu , Ryo Minematsu , Yosuke Kawabata , Shintaro Nakajima , Ryota Fuse , Ryu Funase\",\"doi\":\"10.1016/j.actaastro.2024.11.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>AQUARIUS (AQUA ResIstojet propUlsion System), a water resistojet propulsion system installed on a 6U CubeSat EQUULEUS (EQUilibriUm Lunar–Earth point 6U Spacecraft), successfully conducted multiple orbital transfers including the world’s first water-fueled propulsion system operation in deep space. We present the on-orbit performance analysis of AQUARIUS with a focus on reaction control thrusters responsible for the spacecraft’s angular momentum management. The reaction control thrusters were capable of producing torques about all axes for angular momentum management as intended. Additionally, they provided fine translational delta-V, demonstrating the thrusters’ dual functionality and reliability in critical maneuvers. The impulse vector of each reaction control thruster was estimated by considering the thrust vector direction. The calculated impulse in the translational axis was about 0.10 N<span><math><mi>⋅</mi></math></span>s per shot, which was validated by comparing the impulse obtained from the Doppler shift of the communication waves. The estimated on-orbit specific impulse of the reaction control thrusters was approximately 78 s, 1.3 times larger than the measured value in the ground test. This improvement on orbit could be due to the degradation of thrust coefficient efficiency in the ground test caused by low Reynolds number flows and high background pressure lowering the apparent pressure thrust. The consumed propellant mass on orbit was estimated but deviated from the expected value under high-temperature conditions, possibly due to temperature measurement uncertainties or the influence of the on-orbit environment.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"227 \",\"pages\":\"Pages 114-125\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006921\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006921","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A water resistojet propulsion system on a 6U CubeSat EQUULEUS: Demonstration of reaction control in deep space
AQUARIUS (AQUA ResIstojet propUlsion System), a water resistojet propulsion system installed on a 6U CubeSat EQUULEUS (EQUilibriUm Lunar–Earth point 6U Spacecraft), successfully conducted multiple orbital transfers including the world’s first water-fueled propulsion system operation in deep space. We present the on-orbit performance analysis of AQUARIUS with a focus on reaction control thrusters responsible for the spacecraft’s angular momentum management. The reaction control thrusters were capable of producing torques about all axes for angular momentum management as intended. Additionally, they provided fine translational delta-V, demonstrating the thrusters’ dual functionality and reliability in critical maneuvers. The impulse vector of each reaction control thruster was estimated by considering the thrust vector direction. The calculated impulse in the translational axis was about 0.10 Ns per shot, which was validated by comparing the impulse obtained from the Doppler shift of the communication waves. The estimated on-orbit specific impulse of the reaction control thrusters was approximately 78 s, 1.3 times larger than the measured value in the ground test. This improvement on orbit could be due to the degradation of thrust coefficient efficiency in the ground test caused by low Reynolds number flows and high background pressure lowering the apparent pressure thrust. The consumed propellant mass on orbit was estimated but deviated from the expected value under high-temperature conditions, possibly due to temperature measurement uncertainties or the influence of the on-orbit environment.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.