{"title":"了解薄钢薄板压力控制线性摩擦焊接的热-力学变化及其接头完整性","authors":"Rishabh Shotri , Takuya Miura , Peihao Geng , Yoshiaki Morisada , Kohsaku Ushioda , Hidetoshi Fujii","doi":"10.1016/j.ijmachtools.2024.104235","DOIUrl":null,"url":null,"abstract":"<div><div>Linear friction welding is a solid-state joining technology that bonds materials via friction heating and plastic deformation. This process is being extensively researched for welding metallic sheets with different dimensions; however, it involves difficulties in joining thin cross-sections due to extensive misalignment and unsteady plastic extrusion of softened materials at interfaces. This study introduces novel efforts for joining thin cross-sections through pressure-controlled oscillations and displacements, facilitating localized plastic flow essential for high-strength solid-state bond formation. This method is rare, and the results reveal base metal fractures in tensile-tested welded joints of 2 mm thick S45C steel sheets. The interfacial yielding at specific temperatures is obtained by applying pressure corresponding to the temperature-dependent strength of the material. Accordingly, the welding is attempted using a hydraulic-based clamping system designed to accommodate large sheet lengths while allowing precise control of the interface pressure and temperature to facilitate controlled material plastic discharge. However, the requisite joint evolution tracking remains infeasible due to the intricate weld designs and is instead uncovered through novel numerical investigations. Modeling simultaneous oscillations and forging displacement while maintaining pressure depicted the kinetics of continual interfacial deformation. The transient fluctuations in plastic stress and temperature increments distinguish the stages of forging under different conditions. The computed temperature vs. plastic strain and the measured change in interfacial microstructures from martensite to dynamically recrystallized very fine ferrite with fragmented small cementite explain the lower temperature welding for an increase in applied pressure, enhancing the understanding of linear friction welding of thin steel sections for industrial applications.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"204 ","pages":"Article 104235"},"PeriodicalIF":14.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding thermal-mechanical variations and resulting joint integrity of pressure-controlled linear friction welding of thin-steel sheets\",\"authors\":\"Rishabh Shotri , Takuya Miura , Peihao Geng , Yoshiaki Morisada , Kohsaku Ushioda , Hidetoshi Fujii\",\"doi\":\"10.1016/j.ijmachtools.2024.104235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Linear friction welding is a solid-state joining technology that bonds materials via friction heating and plastic deformation. This process is being extensively researched for welding metallic sheets with different dimensions; however, it involves difficulties in joining thin cross-sections due to extensive misalignment and unsteady plastic extrusion of softened materials at interfaces. This study introduces novel efforts for joining thin cross-sections through pressure-controlled oscillations and displacements, facilitating localized plastic flow essential for high-strength solid-state bond formation. This method is rare, and the results reveal base metal fractures in tensile-tested welded joints of 2 mm thick S45C steel sheets. The interfacial yielding at specific temperatures is obtained by applying pressure corresponding to the temperature-dependent strength of the material. Accordingly, the welding is attempted using a hydraulic-based clamping system designed to accommodate large sheet lengths while allowing precise control of the interface pressure and temperature to facilitate controlled material plastic discharge. However, the requisite joint evolution tracking remains infeasible due to the intricate weld designs and is instead uncovered through novel numerical investigations. Modeling simultaneous oscillations and forging displacement while maintaining pressure depicted the kinetics of continual interfacial deformation. The transient fluctuations in plastic stress and temperature increments distinguish the stages of forging under different conditions. The computed temperature vs. plastic strain and the measured change in interfacial microstructures from martensite to dynamically recrystallized very fine ferrite with fragmented small cementite explain the lower temperature welding for an increase in applied pressure, enhancing the understanding of linear friction welding of thin steel sections for industrial applications.</div></div>\",\"PeriodicalId\":14011,\"journal\":{\"name\":\"International Journal of Machine Tools & Manufacture\",\"volume\":\"204 \",\"pages\":\"Article 104235\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tools & Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890695524001214\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524001214","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Understanding thermal-mechanical variations and resulting joint integrity of pressure-controlled linear friction welding of thin-steel sheets
Linear friction welding is a solid-state joining technology that bonds materials via friction heating and plastic deformation. This process is being extensively researched for welding metallic sheets with different dimensions; however, it involves difficulties in joining thin cross-sections due to extensive misalignment and unsteady plastic extrusion of softened materials at interfaces. This study introduces novel efforts for joining thin cross-sections through pressure-controlled oscillations and displacements, facilitating localized plastic flow essential for high-strength solid-state bond formation. This method is rare, and the results reveal base metal fractures in tensile-tested welded joints of 2 mm thick S45C steel sheets. The interfacial yielding at specific temperatures is obtained by applying pressure corresponding to the temperature-dependent strength of the material. Accordingly, the welding is attempted using a hydraulic-based clamping system designed to accommodate large sheet lengths while allowing precise control of the interface pressure and temperature to facilitate controlled material plastic discharge. However, the requisite joint evolution tracking remains infeasible due to the intricate weld designs and is instead uncovered through novel numerical investigations. Modeling simultaneous oscillations and forging displacement while maintaining pressure depicted the kinetics of continual interfacial deformation. The transient fluctuations in plastic stress and temperature increments distinguish the stages of forging under different conditions. The computed temperature vs. plastic strain and the measured change in interfacial microstructures from martensite to dynamically recrystallized very fine ferrite with fragmented small cementite explain the lower temperature welding for an increase in applied pressure, enhancing the understanding of linear friction welding of thin steel sections for industrial applications.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).