机载PLC中脉冲噪声的抑制:介绍MIMO OFDM系统中的S-SAMP-PV算法

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruowen Yan, Qiao Li, Huagang Xiong
{"title":"机载PLC中脉冲噪声的抑制:介绍MIMO OFDM系统中的S-SAMP-PV算法","authors":"Ruowen Yan,&nbsp;Qiao Li,&nbsp;Huagang Xiong","doi":"10.1016/j.sigpro.2024.109798","DOIUrl":null,"url":null,"abstract":"<div><div>Power Line Communication (PLC) offers an efficient solution for data transmission over electrical power lines, presenting a promising avenue for in-flight communication in More Electrical Aircraft (MEA). A significant challenge in airborne PLC is Impulsive Noise (IN), which hampers transmission reliability. Existing noise mitigation methods, while valuable, face limitations in airborne settings due to computational intensiveness and sub-optimal sparse recovery performance. This paper introduces the Structured Sparsity Adaptive Matching Pursuit with Preliminary partial support estimation and Variable step-size (S-SAMP-PV) algorithm, devised for Multiple-Input-Multiple-Output (MIMO) systems. It uniquely pre-estimates partial support of sparse IN signals, enabling adaptive convergence without prior sparsity knowledge. This methodology substantially reduces computational demands, satisfying stringent real-time requirements of airborne applications. In simulation, the S-SAMP-PV algorithm exhibits marked advantages over traditional algorithms such as Orthogonal Matching Pursuit (OMP). Specifically, it realizes an approximate 81.3<span><math><mtext>%</mtext></math></span> reduction in Normalized Mean Square Error (NMSE) and demonstrates around 37<span><math><mtext>%</mtext></math></span> improvement in computational efficiency relative to OMP. Moreover, its Bit Error Rate (BER) performance at high Signal to Noise Ratio (SNR) approaches the ideal scenario where IN is assumed to be perfectly eliminated. These results emphasize the promise of S-SAMP-PV in elevating the performance of airborne PLC systems by efficient IN mitigation.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"230 ","pages":"Article 109798"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating impulsive noise in airborne PLC: Introducing the S-SAMP-PV algorithm for MIMO OFDM systems\",\"authors\":\"Ruowen Yan,&nbsp;Qiao Li,&nbsp;Huagang Xiong\",\"doi\":\"10.1016/j.sigpro.2024.109798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Power Line Communication (PLC) offers an efficient solution for data transmission over electrical power lines, presenting a promising avenue for in-flight communication in More Electrical Aircraft (MEA). A significant challenge in airborne PLC is Impulsive Noise (IN), which hampers transmission reliability. Existing noise mitigation methods, while valuable, face limitations in airborne settings due to computational intensiveness and sub-optimal sparse recovery performance. This paper introduces the Structured Sparsity Adaptive Matching Pursuit with Preliminary partial support estimation and Variable step-size (S-SAMP-PV) algorithm, devised for Multiple-Input-Multiple-Output (MIMO) systems. It uniquely pre-estimates partial support of sparse IN signals, enabling adaptive convergence without prior sparsity knowledge. This methodology substantially reduces computational demands, satisfying stringent real-time requirements of airborne applications. In simulation, the S-SAMP-PV algorithm exhibits marked advantages over traditional algorithms such as Orthogonal Matching Pursuit (OMP). Specifically, it realizes an approximate 81.3<span><math><mtext>%</mtext></math></span> reduction in Normalized Mean Square Error (NMSE) and demonstrates around 37<span><math><mtext>%</mtext></math></span> improvement in computational efficiency relative to OMP. Moreover, its Bit Error Rate (BER) performance at high Signal to Noise Ratio (SNR) approaches the ideal scenario where IN is assumed to be perfectly eliminated. These results emphasize the promise of S-SAMP-PV in elevating the performance of airborne PLC systems by efficient IN mitigation.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"230 \",\"pages\":\"Article 109798\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424004183\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424004183","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电力线通信(PLC)为电力线上的数据传输提供了一种有效的解决方案,为多电气飞机(MEA)的飞行通信提供了一条有前途的途径。机载PLC面临的一个重大挑战是脉冲噪声,它影响了传输的可靠性。现有的噪声缓解方法虽然有价值,但由于计算强度和次优稀疏恢复性能,在机载环境中面临局限性。本文介绍了针对多输入多输出(MIMO)系统设计的具有初步部分支持估计和变步长的结构化稀疏自适应匹配追踪(S-SAMP-PV)算法。它独特地预估了稀疏IN信号的部分支持度,使自适应收敛无需先验稀疏性知识。这种方法大大减少了计算需求,满足了机载应用的严格实时要求。在仿真中,S-SAMP-PV算法比传统的正交匹配追踪(OMP)算法具有明显的优势。具体来说,它实现了标准化均方误差(NMSE)降低了大约81.3%,并且相对于OMP的计算效率提高了大约37%。此外,在高信噪比(SNR)下,其误码率(BER)性能接近于假设完全消除IN的理想情况。这些结果强调了S-SAMP-PV通过有效的in缓解来提高机载PLC系统性能的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating impulsive noise in airborne PLC: Introducing the S-SAMP-PV algorithm for MIMO OFDM systems
Power Line Communication (PLC) offers an efficient solution for data transmission over electrical power lines, presenting a promising avenue for in-flight communication in More Electrical Aircraft (MEA). A significant challenge in airborne PLC is Impulsive Noise (IN), which hampers transmission reliability. Existing noise mitigation methods, while valuable, face limitations in airborne settings due to computational intensiveness and sub-optimal sparse recovery performance. This paper introduces the Structured Sparsity Adaptive Matching Pursuit with Preliminary partial support estimation and Variable step-size (S-SAMP-PV) algorithm, devised for Multiple-Input-Multiple-Output (MIMO) systems. It uniquely pre-estimates partial support of sparse IN signals, enabling adaptive convergence without prior sparsity knowledge. This methodology substantially reduces computational demands, satisfying stringent real-time requirements of airborne applications. In simulation, the S-SAMP-PV algorithm exhibits marked advantages over traditional algorithms such as Orthogonal Matching Pursuit (OMP). Specifically, it realizes an approximate 81.3% reduction in Normalized Mean Square Error (NMSE) and demonstrates around 37% improvement in computational efficiency relative to OMP. Moreover, its Bit Error Rate (BER) performance at high Signal to Noise Ratio (SNR) approaches the ideal scenario where IN is assumed to be perfectly eliminated. These results emphasize the promise of S-SAMP-PV in elevating the performance of airborne PLC systems by efficient IN mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信