Milica Popovic , Lea Isermann , Simon Geißen , Katharina Senft , Theodoros Georgomanolis , Stephan Baldus , Christian Frezza , Aleksandra Trifunovic
{"title":"对细胞色素c氧化酶缺乏的组织特异性适应形成生理结果。","authors":"Milica Popovic , Lea Isermann , Simon Geißen , Katharina Senft , Theodoros Georgomanolis , Stephan Baldus , Christian Frezza , Aleksandra Trifunovic","doi":"10.1016/j.bbadis.2024.167567","DOIUrl":null,"url":null,"abstract":"<div><div>It becomes increasingly clear that the tissue specificity of mitochondrial diseases might in part rely on their ability to compensate for mitochondrial defects, contributing to the heterogeneous nature of mitochondrial diseases. Here, we investigated tissue-specific responses to cytochrome <em>c</em> oxidase (CIV or COX) deficiency using a mouse model with heart and skeletal muscle-specific depletion of the COX assembly factor COX10. At three weeks of age, both tissues exhibit pronounced CIV depletion but respond differently to oxidative phosphorylation (OXPHOS) impairment. Heart-specific COX10 depletion caused severe dilated cardiomyopathy, while skeletal muscle experiences less damage. Cardiac CIV deficiency triggered extensive metabolic remodelling and stress response activation, potentially worsening cardiomyopathy, whereas skeletal muscle showed no stress response or significant metabolic changes. Our findings highlight distinct tissue capacities for managing CIV deficiency, explaining how identical primary defects can lead to different phenotypic outcomes and contribute to the heterogeneous progression of mitochondrial diseases.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 3","pages":"Article 167567"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue-specific adaptations to cytochrome c oxidase deficiency shape physiological outcomes\",\"authors\":\"Milica Popovic , Lea Isermann , Simon Geißen , Katharina Senft , Theodoros Georgomanolis , Stephan Baldus , Christian Frezza , Aleksandra Trifunovic\",\"doi\":\"10.1016/j.bbadis.2024.167567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It becomes increasingly clear that the tissue specificity of mitochondrial diseases might in part rely on their ability to compensate for mitochondrial defects, contributing to the heterogeneous nature of mitochondrial diseases. Here, we investigated tissue-specific responses to cytochrome <em>c</em> oxidase (CIV or COX) deficiency using a mouse model with heart and skeletal muscle-specific depletion of the COX assembly factor COX10. At three weeks of age, both tissues exhibit pronounced CIV depletion but respond differently to oxidative phosphorylation (OXPHOS) impairment. Heart-specific COX10 depletion caused severe dilated cardiomyopathy, while skeletal muscle experiences less damage. Cardiac CIV deficiency triggered extensive metabolic remodelling and stress response activation, potentially worsening cardiomyopathy, whereas skeletal muscle showed no stress response or significant metabolic changes. Our findings highlight distinct tissue capacities for managing CIV deficiency, explaining how identical primary defects can lead to different phenotypic outcomes and contribute to the heterogeneous progression of mitochondrial diseases.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 3\",\"pages\":\"Article 167567\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443924005611\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443924005611","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Tissue-specific adaptations to cytochrome c oxidase deficiency shape physiological outcomes
It becomes increasingly clear that the tissue specificity of mitochondrial diseases might in part rely on their ability to compensate for mitochondrial defects, contributing to the heterogeneous nature of mitochondrial diseases. Here, we investigated tissue-specific responses to cytochrome c oxidase (CIV or COX) deficiency using a mouse model with heart and skeletal muscle-specific depletion of the COX assembly factor COX10. At three weeks of age, both tissues exhibit pronounced CIV depletion but respond differently to oxidative phosphorylation (OXPHOS) impairment. Heart-specific COX10 depletion caused severe dilated cardiomyopathy, while skeletal muscle experiences less damage. Cardiac CIV deficiency triggered extensive metabolic remodelling and stress response activation, potentially worsening cardiomyopathy, whereas skeletal muscle showed no stress response or significant metabolic changes. Our findings highlight distinct tissue capacities for managing CIV deficiency, explaining how identical primary defects can lead to different phenotypic outcomes and contribute to the heterogeneous progression of mitochondrial diseases.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.