{"title":"通过PROTAC靶向PRMT5治疗三阴性乳腺癌。","authors":"Yaxun Guo, Yuzhan Li, Zhongmei Zhou, Lei Hou, Wenjing Liu, Wenlong Ren, Dazhao Mi, Jian Sun, Xueqin Dai, Yingying Wu, Zhuo Cheng, Tingyue Wu, Qianmei Luo, Cong Tian, Fubing Li, Zhigang Yu, Yihua Chen, Ceshi Chen","doi":"10.1186/s13046-024-03237-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation.</p><p><strong>Methods: </strong>This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo.</p><p><strong>Results: </strong>Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice.</p><p><strong>Conclusions: </strong>These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC.</p><p><strong>Trial registration: </strong>Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"314"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607928/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer.\",\"authors\":\"Yaxun Guo, Yuzhan Li, Zhongmei Zhou, Lei Hou, Wenjing Liu, Wenlong Ren, Dazhao Mi, Jian Sun, Xueqin Dai, Yingying Wu, Zhuo Cheng, Tingyue Wu, Qianmei Luo, Cong Tian, Fubing Li, Zhigang Yu, Yihua Chen, Ceshi Chen\",\"doi\":\"10.1186/s13046-024-03237-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation.</p><p><strong>Methods: </strong>This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo.</p><p><strong>Results: </strong>Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice.</p><p><strong>Conclusions: </strong>These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC.</p><p><strong>Trial registration: </strong>Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"314\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607928/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03237-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03237-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:三阴性乳腺癌(triple negative breast cancer, TNBC)是目前最具侵袭性的乳腺癌亚型,具有异质性高、侵袭性强的特点,目前缺乏有效的治疗方法。PRMT5是一种II型蛋白精氨酸甲基转移酶,在包括TNBC在内的许多癌症中上调,并发挥关键作用,标志着它是一个有吸引力的治疗靶点。PROTAC (Proteolysis Targeting Chimeras)是一项利用泛素-蛋白酶体系统(UPS)降解靶蛋白的创新药物开发技术,具有活性更高、安全性更高、耐药更低、毒性更低的特点,在临床翻译中具有重要价值。方法:本研究利用PROTAC技术在体外和体内制备靶向PRMT5的潜在降解物。结果:通过一系列靶向化合物的设计、合成和筛选,我们鉴定出YZ-836P是一种发挥细胞毒作用的有效化合物,可在48 h后降低TNBC中PRMT5及其关键下游靶蛋白KLF5的蛋白水平,其效果明显优于已有报道的PRMT5 PROTAC降降剂。YZ-836P诱导TNBC细胞G1期细胞周期阻滞,显著诱导TNBC细胞凋亡。此外,我们证明YZ-836P以小脑(CRBN)依赖的方式促进PRMT5的泛素化和降解。值得注意的是,YZ-836P在抑制裸鼠TNBC患者来源的类器官和异种移植物生长方面表现出明显的功效。结论:这些发现使YZ-836P成为推进TNBC治疗方式的有希望的候选药物。试验注册:云南省肿瘤医院伦理委员会,KYCS2023-078。2023年6月7日注册
Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer.
Background: Triple-negative breast cancer (TNBC) is currently the most aggressive subtype of breast cancer, characterized by high heterogeneity and strong invasiveness, and currently lacks effective therapies. PRMT5, a type II protein arginine methyltransferase, is upregulated in numerous cancers, including TNBC, and plays a critical role, marked it as an attractive therapeutic target. PROTAC (Proteolysis Targeting Chimeras) is an innovative drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins, which is characterized by higher activity, enhanced safety, lower resistance, and reduced toxicity, offering significant value for clinical translation.
Methods: This study utilizes the PROTAC technology to develop potential degraders targeting PRMT5 in vitro and in vivo.
Results: Through the design, synthesis and screening of a series of targeted compounds, we identified YZ-836P as an effective compound that exerted cytotoxic effects and reduced the protein levels of PRMT5 and its key downstream target protein KLF5 in TNBC after 48 h. Its efficacy was significantly superior to the PRMT5 PROTAC degraders that had been reported. YZ-836P induced G1 phase cell cycle arrest and significantly induced apoptosis in TNBC cells. Additionally, we demonstrated that YZ-836P promoted the ubiquitination and degradation of PRMT5 in a cereblon (CRBN)-dependent manner. Notably, YZ-836P exhibited pronounced efficacy in inhibiting the growth of TNBC patient-derived organoids and xenografts in nude mice.
Conclusions: These findings position YZ-836P as a promising candidate for advancing treatment modalities for TNBC.
Trial registration: Ethics Committee of Yunnan Cancer Hospital, KYCS2023-078. Registered 7 June 2023.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.