在尼罗罗非鱼饲料中加入沙蚤幼虫饲料代谢组学效应对肉味的影响。

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yanfeng Li, Haozheng Li, Ge Zhang, Jiale Liu, Dawa Drolma, Bo Ye, Manjun Yang
{"title":"在尼罗罗非鱼饲料中加入沙蚤幼虫饲料代谢组学效应对肉味的影响。","authors":"Yanfeng Li, Haozheng Li, Ge Zhang, Jiale Liu, Dawa Drolma, Bo Ye, Manjun Yang","doi":"10.31083/j.fbl2911382","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Zophobas atratus</i> larval meal (ZLM) is a high-quality feed supplement with potential activities that can improve fish growth performance and promote meat quality. However, there have been limited recent studies investigating the metabolic effects of ZLM. Therefore, this study aims to uncover the metabolomic mechanism through which ZLM improves tilapia meat flavor using metabolomic strategies.</p><p><strong>Method: </strong>In this study, soybean meal in the basal diets was replaced with 15%, 30%, or 60% ZLM, where anti-nutrient factors were destroyed by high temperature treatment. After being fed these ZLM supplements for 30 days, dorsal muscles were collected from tilapia for meat sensory evaluation tests. Liver samples were also collected for metabolomic analysis using the gas chromatography-mass spectrometry (GC-MS) platform and combined with biochemical assays to verify metabolism-related enzyme activities and reveal crucial metabolic pathways and critical biomarkers associated with ZLM's ability to improve meat flavor.</p><p><strong>Results: </strong>In tilapia livers, ZLM enhanced the activity of enzymes involved in energy metabolism including succinate dehydrogenase (SDH), pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (α-KGDH), NADP-malate dehydrogenase (NAD-MDH) and mitochondrial isocitrate dehydrogenase (ICDHm). This resulted in increased levels of reduced nicotinamide adenine dinucleotide (NADH), acetyl CoA and ATP which led to accumulation of flavor fatty acids such as arachidonic acid, linoleic acid (9,12-Octadecadienoic acid), linolenic acid (9,12,15-Octadecatrienoic acid) and oleic acid (9-Octadecenoic acid). Additionally, there was an increase in flavor nucleotides like guanosine adenosine-5'-monophosphate and uridine-5'-monophosphate while off-flavor metabolites like inosine and hypoxanthine decreased. Furthermore, beneficial metabolomic responses led to a decrease in off-flavor metabolites such as 2-methylisoborneol trimethylamine and geosmin while increasing umami metabolites like 2-methyl-3-furanthiol and nonanal.</p><p><strong>Conclusions: </strong>This metabolomic study demonstrates that inclusion of ZLM diets enhances the flavor profile of tilapia dorsal muscle. The accumulation of flavor compounds, coupled with a reduction in earthy taste and off-flavor metabolites, contributes to an improved meat flavor and freshness. Additionally, there is an increase in the levels of flavor-related amino acids and nucleotides. These previously unidentified metabolic effects highlight the potential significance of ZLM as a dietary supplement for enhancing the biosynthesis of flavor metabolites in tilapia.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"29 11","pages":"382"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosted Meat Flavor by the Metabolomic Effects of Nile Tilapia Dietary Inclusion of <i>Zophobas atratus</i> Larval Meal.\",\"authors\":\"Yanfeng Li, Haozheng Li, Ge Zhang, Jiale Liu, Dawa Drolma, Bo Ye, Manjun Yang\",\"doi\":\"10.31083/j.fbl2911382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong><i>Zophobas atratus</i> larval meal (ZLM) is a high-quality feed supplement with potential activities that can improve fish growth performance and promote meat quality. However, there have been limited recent studies investigating the metabolic effects of ZLM. Therefore, this study aims to uncover the metabolomic mechanism through which ZLM improves tilapia meat flavor using metabolomic strategies.</p><p><strong>Method: </strong>In this study, soybean meal in the basal diets was replaced with 15%, 30%, or 60% ZLM, where anti-nutrient factors were destroyed by high temperature treatment. After being fed these ZLM supplements for 30 days, dorsal muscles were collected from tilapia for meat sensory evaluation tests. Liver samples were also collected for metabolomic analysis using the gas chromatography-mass spectrometry (GC-MS) platform and combined with biochemical assays to verify metabolism-related enzyme activities and reveal crucial metabolic pathways and critical biomarkers associated with ZLM's ability to improve meat flavor.</p><p><strong>Results: </strong>In tilapia livers, ZLM enhanced the activity of enzymes involved in energy metabolism including succinate dehydrogenase (SDH), pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (α-KGDH), NADP-malate dehydrogenase (NAD-MDH) and mitochondrial isocitrate dehydrogenase (ICDHm). This resulted in increased levels of reduced nicotinamide adenine dinucleotide (NADH), acetyl CoA and ATP which led to accumulation of flavor fatty acids such as arachidonic acid, linoleic acid (9,12-Octadecadienoic acid), linolenic acid (9,12,15-Octadecatrienoic acid) and oleic acid (9-Octadecenoic acid). Additionally, there was an increase in flavor nucleotides like guanosine adenosine-5'-monophosphate and uridine-5'-monophosphate while off-flavor metabolites like inosine and hypoxanthine decreased. Furthermore, beneficial metabolomic responses led to a decrease in off-flavor metabolites such as 2-methylisoborneol trimethylamine and geosmin while increasing umami metabolites like 2-methyl-3-furanthiol and nonanal.</p><p><strong>Conclusions: </strong>This metabolomic study demonstrates that inclusion of ZLM diets enhances the flavor profile of tilapia dorsal muscle. The accumulation of flavor compounds, coupled with a reduction in earthy taste and off-flavor metabolites, contributes to an improved meat flavor and freshness. Additionally, there is an increase in the levels of flavor-related amino acids and nucleotides. These previously unidentified metabolic effects highlight the potential significance of ZLM as a dietary supplement for enhancing the biosynthesis of flavor metabolites in tilapia.</p>\",\"PeriodicalId\":73069,\"journal\":{\"name\":\"Frontiers in bioscience (Landmark edition)\",\"volume\":\"29 11\",\"pages\":\"382\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Landmark edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbl2911382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2911382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:atratus zoophobas幼虫粉(ZLM)是一种具有改善鱼类生长性能和提高肉质的潜在活性的优质饲料添加剂。然而,最近关于ZLM代谢作用的研究有限。因此,本研究旨在揭示ZLM通过代谢组学策略改善罗非鱼肉味的代谢组学机制。方法:以15%、30%、60%的ZLM替代基础饲粮中的豆粕,高温处理破坏抗营养因子。饲喂这些ZLM补充剂30天后,收集罗非鱼背部肌肉进行肉感评价试验。利用气相色谱-质谱(GC-MS)平台收集肝脏样本进行代谢组学分析,并结合生化分析验证代谢相关酶活性,揭示与ZLM改善肉味能力相关的关键代谢途径和关键生物标志物。结果:ZLM提高了罗非鱼肝脏中琥珀酸脱氢酶(SDH)、丙酮酸脱氢酶(PDH)、α-酮戊二酸脱氢酶(α-KGDH)、nadp -苹果酸脱氢酶(nadp - mdh)和线粒体异柠檬酸脱氢酶(ICDHm)等能量代谢相关酶的活性。这导致烟酰胺腺嘌呤二核苷酸(NADH)、乙酰辅酶a和ATP的还原水平增加,从而导致花生四烯酸、亚油酸(9,12-十八烯二酸)、亚麻酸(9,12,15-十八烯二酸)和油酸(9-十八烯酸)等风味脂肪酸的积累。此外,风味核苷酸如鸟苷腺苷-5'-单磷酸和尿苷-5'-单磷酸增加,而非风味代谢物如肌苷和次黄嘌呤减少。此外,有益的代谢组学反应导致非风味代谢物(如2-甲基异龙脑三甲胺和土臭素)的减少,而鲜味代谢物(如2-甲基-3-呋喃醇和壬醛)的增加。结论:这项代谢组学研究表明,添加ZLM饲料可以增强罗非鱼背肌的风味特征。风味化合物的积累,加上泥土味和异味代谢物的减少,有助于改善肉的风味和新鲜度。此外,与风味相关的氨基酸和核苷酸的含量也有所增加。这些先前未被发现的代谢作用凸显了ZLM作为一种膳食补充剂在促进罗非鱼风味代谢物生物合成方面的潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosted Meat Flavor by the Metabolomic Effects of Nile Tilapia Dietary Inclusion of Zophobas atratus Larval Meal.

Background: Zophobas atratus larval meal (ZLM) is a high-quality feed supplement with potential activities that can improve fish growth performance and promote meat quality. However, there have been limited recent studies investigating the metabolic effects of ZLM. Therefore, this study aims to uncover the metabolomic mechanism through which ZLM improves tilapia meat flavor using metabolomic strategies.

Method: In this study, soybean meal in the basal diets was replaced with 15%, 30%, or 60% ZLM, where anti-nutrient factors were destroyed by high temperature treatment. After being fed these ZLM supplements for 30 days, dorsal muscles were collected from tilapia for meat sensory evaluation tests. Liver samples were also collected for metabolomic analysis using the gas chromatography-mass spectrometry (GC-MS) platform and combined with biochemical assays to verify metabolism-related enzyme activities and reveal crucial metabolic pathways and critical biomarkers associated with ZLM's ability to improve meat flavor.

Results: In tilapia livers, ZLM enhanced the activity of enzymes involved in energy metabolism including succinate dehydrogenase (SDH), pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (α-KGDH), NADP-malate dehydrogenase (NAD-MDH) and mitochondrial isocitrate dehydrogenase (ICDHm). This resulted in increased levels of reduced nicotinamide adenine dinucleotide (NADH), acetyl CoA and ATP which led to accumulation of flavor fatty acids such as arachidonic acid, linoleic acid (9,12-Octadecadienoic acid), linolenic acid (9,12,15-Octadecatrienoic acid) and oleic acid (9-Octadecenoic acid). Additionally, there was an increase in flavor nucleotides like guanosine adenosine-5'-monophosphate and uridine-5'-monophosphate while off-flavor metabolites like inosine and hypoxanthine decreased. Furthermore, beneficial metabolomic responses led to a decrease in off-flavor metabolites such as 2-methylisoborneol trimethylamine and geosmin while increasing umami metabolites like 2-methyl-3-furanthiol and nonanal.

Conclusions: This metabolomic study demonstrates that inclusion of ZLM diets enhances the flavor profile of tilapia dorsal muscle. The accumulation of flavor compounds, coupled with a reduction in earthy taste and off-flavor metabolites, contributes to an improved meat flavor and freshness. Additionally, there is an increase in the levels of flavor-related amino acids and nucleotides. These previously unidentified metabolic effects highlight the potential significance of ZLM as a dietary supplement for enhancing the biosynthesis of flavor metabolites in tilapia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信