gaba能神经元中GIPR信号的特异性丧失可增强GLP-1R激动剂诱导的体重减轻。

IF 7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Jordan Wean, Allison Ho Kowalsky, Rhianna Laker, Sarah Will, Daniel J Drucker, Christopher J Rhodes, Randy J Seeley
{"title":"gaba能神经元中GIPR信号的特异性丧失可增强GLP-1R激动剂诱导的体重减轻。","authors":"Jordan Wean, Allison Ho Kowalsky, Rhianna Laker, Sarah Will, Daniel J Drucker, Christopher J Rhodes, Randy J Seeley","doi":"10.1016/j.molmet.2024.102074","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown.</p><p><strong>Methods: </strong>To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements.</p><p><strong>Results: </strong>A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism.</p><p><strong>Conclusions: </strong>Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.</p>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":" ","pages":"102074"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss.\",\"authors\":\"Jordan Wean, Allison Ho Kowalsky, Rhianna Laker, Sarah Will, Daniel J Drucker, Christopher J Rhodes, Randy J Seeley\",\"doi\":\"10.1016/j.molmet.2024.102074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown.</p><p><strong>Methods: </strong>To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements.</p><p><strong>Results: </strong>A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism.</p><p><strong>Conclusions: </strong>Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.</p>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\" \",\"pages\":\"102074\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molmet.2024.102074\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molmet.2024.102074","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:双肠促胰岛素激动剂是迄今为止治疗肥胖和2型糖尿病最有效的药物之一。这种治疗方法可以针对两种受体,如胰高血糖素样肽-1 (GLP-1)受体和替西肽中葡萄糖依赖性胰岛素性多肽(GIP)受体,以改善血糖和减轻体重。关于体重效应,GIPR信号被认为至少涉及两种相关机制:加强食物摄入减少和GLP-1R激动剂引起的厌恶效应的衰减。虽然已知双重GLP-1R- gipr激动作用比单独GLP-1R激动作用产生更大的体重减轻,但确切的机制尚不清楚。方法:为了解决这个问题,我们使用了全身缺乏GIPR的小鼠,gaba能神经元或谷氨酸能神经元。这些小鼠被给予GLP-1R和GIPR激动剂药物的各种组合,随后进行食物摄入和条件性味觉厌恶测量。结果:GIPR敲除全身或选择性地敲除抑制性gaba能神经元可以防止饮食引起的肥胖,而敲除兴奋性谷氨酸能神经元的作用可以忽略不计。此外,我们发现gaba能神经元中的GIPR对于增强双肠促胰岛素激动剂的减肥效果至关重要,然而,令人惊讶的是,去除它可以增强单独GLP-1R激动剂的效果。最后,gaba能神经元中的GIPR敲除可阻止GIPR激动作用的抗厌恶作用。结论:我们的发现与大部分GIPR研究一致,即增强和去除GIPR信号都对代谢有益。然而,值得注意的是,我们的研究结果表明,未来设计用于调节GIPR信号的肥胖疗法,无论是通过激动作用还是拮抗作用,都将最好地针对gaba能神经元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific loss of GIPR signaling in GABAergic neurons enhances GLP-1R agonist-induced body weight loss.

Objectives: Dual incretin agonists are among the most effective pharmaceutical treatments for obesity and type 2 diabetes to date. Such therapeutics can target two receptors, such as the glucagon-like peptide-1 (GLP-1) receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor in the case of tirzepatide, to improve glycemia and reduce body weight. Regarding body weight effects, GIPR signaling is thought to involve at least two relevant mechanisms: the enhancement of food intake reduction and the attenuation of aversive effects caused by GLP-1R agonists. Although it is known that dual GLP-1R-GIPR agonism produces greater weight loss than GLP-1R agonism alone, the precise mechanism is unknown.

Methods: To address this question, we used mice lacking GIPR in the whole body, GABAergic neurons, or glutamatergic neurons. These mice were given various combinations of GLP-1R and GIPR agonist drugs with subsequent food intake and conditioned taste aversion measurements.

Results: A GIPR knockout in either the whole body or selectively in inhibitory GABAergic neurons protects against diet-induced obesity, whereas a knockout in excitatory glutamatergic neurons had a negligible effect. Furthermore, we found that GIPR in GABAergic neurons is essential for the enhanced weight loss efficacy of dual incretin agonism, yet, surprisingly, its removal enhances the effect of GLP-1R agonism alone. Finally, GIPR knockout in GABAergic neurons prevents the anti-aversive effects of GIPR agonism.

Conclusions: Our findings are consistent with GIPR research at large in that both enhancement and removal of GIPR signaling are metabolically beneficial. Notably, however, our findings suggest that future obesity therapies designed to modulate GIPR signaling, whether by agonism or antagonism, would be best targeted towards GABAergic neurons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Metabolism
Molecular Metabolism ENDOCRINOLOGY & METABOLISM-
CiteScore
14.50
自引率
2.50%
发文量
219
审稿时长
43 days
期刊介绍: Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction. We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信