{"title":"人脐带间充质干细胞通过调节骨髓脂肪组织改善骨髓造血功能。","authors":"Jingyi Feng, Miao Zhang, Huanying Ren, Yan Ren, Zhuanghui Hao, Sicheng Bian, Jiangxia Cui, Shuo Li, Jing Xu, Muteb Muyey Daniel, Fanggang Ren, Zhifang Xu, Yanhong Tan, Xiuhua Chen, Yaofang Zhang, Jianmei Chang, Hongwei Wang","doi":"10.1007/s11010-024-05156-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human umbilical cord mesenchymal stem cells improve bone marrow hematopoiesis through regulation of bone marrow adipose tissue.\",\"authors\":\"Jingyi Feng, Miao Zhang, Huanying Ren, Yan Ren, Zhuanghui Hao, Sicheng Bian, Jiangxia Cui, Shuo Li, Jing Xu, Muteb Muyey Daniel, Fanggang Ren, Zhifang Xu, Yanhong Tan, Xiuhua Chen, Yaofang Zhang, Jianmei Chang, Hongwei Wang\",\"doi\":\"10.1007/s11010-024-05156-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05156-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05156-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Human umbilical cord mesenchymal stem cells improve bone marrow hematopoiesis through regulation of bone marrow adipose tissue.
Bone marrow adipose tissue (BMAT) exhibits a multitude of biological functionalities and influences hematopoiesis. The adiposity status of the bone marrow may play a role in the decline of hematopoietic function. Mesenchymal stem cells (MSCs) constitute crucial regulators within the bone marrow microenvironment; however, their precise role in modulating BMAT and the subsequent implications for hematopoiesis remain poorly understood. We conducted in vivo studies to observe the effects of human umbilical cord mesenchymal stem cells (hucMSCs) on BMAT accumulation and restoration of hematopoietic function in mice with drug-induced hematopoietic impairment. Concurrently, in vitro co-culture experiments were used to investigate the impact of hucMSCs on preadipocytes and mature adipocytes, and the potential subsequent consequences for hematopoietic cells. Moreover, we explored the potential mechanisms underlying these interactions. Our findings reveal that hucMSCs concomitantly mitigate BMAT accumulation and facilitate the recovery of hematopoietic function in mouse models with drug-induced hematopoietic impairment. In vitro, hucMSCs potentially impede adipogenic differentiation of 3T3-L1 preadipocytes through interference with the JAK2/STAT3 signaling pathway and affect the functionality of mature adipocytes, thus mitigating the detrimental effects of adipocytes on hematopoietic stem cells (HSCs). Furthermore, we demonstrate that hucMSCs may protect hematopoietic cells from adipocyte-induced damage by protecting antioxidative mechanisms. These results suggest that hucMSCs exhibit an inhibitory effect on the excessive expansion of adipose tissue and modulate adipose tissue function, which may potentially contribute to the regulation of the bone marrow microenvironment and favorably influence hematopoietic function improvement.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.