{"title":"癌症间歇与连续适应性化疗剂量比较的数学框架。","authors":"Cordelia McGehee, Yoichiro Mori","doi":"10.1038/s41540-024-00461-2","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy resistance in cancer remains a barrier to curative therapy in advanced disease. Dosing of chemotherapy is often chosen based on the maximum tolerated dosing principle; drugs that are more toxic to normal tissue are typically given in on-off cycles, whereas those with little toxicity are dosed daily. When intratumoral cell-cell competition between sensitive and resistant cells drives chemotherapy resistance development, it has been proposed that adaptive chemotherapy dosing regimens, whereby a drug is given intermittently at a fixed-dose or continuously at a variable dose based on tumor size, may lengthen progression-free survival over traditional dosing. Indeed, in mathematical models using modified Lotka-Volterra systems to study dose timing, rapid competitive release of the resistant population and tumor outgrowth is apparent when cytotoxic chemotherapy is maximally dosed. This effect is ameliorated with continuous (dose modulation) or intermittent (dose skipping) adaptive therapy in mathematical models and experimentally, however, direct comparison between these two modalities has been limited. Here, we develop a mathematical framework to formally analyze intermittent adaptive therapy in the context of bang-bang control theory. We prove that continuous adaptive therapy is superior to intermittent adaptive therapy in its robustness to uncertainty in initial conditions, time to disease progression, and cumulative toxicity. We additionally show that under certain conditions, resistant population extinction is possible under adaptive therapy or fixed-dose continuous therapy. Here, continuous fixed-dose therapy is more robust to uncertainty in initial conditions than adaptive therapy, suggesting an advantage of traditional dosing paradigms.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"140"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607384/pdf/","citationCount":"0","resultStr":"{\"title\":\"A mathematical framework for comparison of intermittent versus continuous adaptive chemotherapy dosing in cancer.\",\"authors\":\"Cordelia McGehee, Yoichiro Mori\",\"doi\":\"10.1038/s41540-024-00461-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chemotherapy resistance in cancer remains a barrier to curative therapy in advanced disease. Dosing of chemotherapy is often chosen based on the maximum tolerated dosing principle; drugs that are more toxic to normal tissue are typically given in on-off cycles, whereas those with little toxicity are dosed daily. When intratumoral cell-cell competition between sensitive and resistant cells drives chemotherapy resistance development, it has been proposed that adaptive chemotherapy dosing regimens, whereby a drug is given intermittently at a fixed-dose or continuously at a variable dose based on tumor size, may lengthen progression-free survival over traditional dosing. Indeed, in mathematical models using modified Lotka-Volterra systems to study dose timing, rapid competitive release of the resistant population and tumor outgrowth is apparent when cytotoxic chemotherapy is maximally dosed. This effect is ameliorated with continuous (dose modulation) or intermittent (dose skipping) adaptive therapy in mathematical models and experimentally, however, direct comparison between these two modalities has been limited. Here, we develop a mathematical framework to formally analyze intermittent adaptive therapy in the context of bang-bang control theory. We prove that continuous adaptive therapy is superior to intermittent adaptive therapy in its robustness to uncertainty in initial conditions, time to disease progression, and cumulative toxicity. We additionally show that under certain conditions, resistant population extinction is possible under adaptive therapy or fixed-dose continuous therapy. Here, continuous fixed-dose therapy is more robust to uncertainty in initial conditions than adaptive therapy, suggesting an advantage of traditional dosing paradigms.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"10 1\",\"pages\":\"140\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607384/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00461-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00461-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A mathematical framework for comparison of intermittent versus continuous adaptive chemotherapy dosing in cancer.
Chemotherapy resistance in cancer remains a barrier to curative therapy in advanced disease. Dosing of chemotherapy is often chosen based on the maximum tolerated dosing principle; drugs that are more toxic to normal tissue are typically given in on-off cycles, whereas those with little toxicity are dosed daily. When intratumoral cell-cell competition between sensitive and resistant cells drives chemotherapy resistance development, it has been proposed that adaptive chemotherapy dosing regimens, whereby a drug is given intermittently at a fixed-dose or continuously at a variable dose based on tumor size, may lengthen progression-free survival over traditional dosing. Indeed, in mathematical models using modified Lotka-Volterra systems to study dose timing, rapid competitive release of the resistant population and tumor outgrowth is apparent when cytotoxic chemotherapy is maximally dosed. This effect is ameliorated with continuous (dose modulation) or intermittent (dose skipping) adaptive therapy in mathematical models and experimentally, however, direct comparison between these two modalities has been limited. Here, we develop a mathematical framework to formally analyze intermittent adaptive therapy in the context of bang-bang control theory. We prove that continuous adaptive therapy is superior to intermittent adaptive therapy in its robustness to uncertainty in initial conditions, time to disease progression, and cumulative toxicity. We additionally show that under certain conditions, resistant population extinction is possible under adaptive therapy or fixed-dose continuous therapy. Here, continuous fixed-dose therapy is more robust to uncertainty in initial conditions than adaptive therapy, suggesting an advantage of traditional dosing paradigms.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.