无冰早始新世北极的轨道(水文)气候变率。

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Paleoceanography and Paleoclimatology Pub Date : 2024-12-01 Epub Date: 2024-11-27 DOI:10.1029/2024PA004907
Chris D Fokkema, Henk Brinkhuis, Francien Peterse, Appy Sluijs
{"title":"无冰早始新世北极的轨道(水文)气候变率。","authors":"Chris D Fokkema, Henk Brinkhuis, Francien Peterse, Appy Sluijs","doi":"10.1029/2024PA004907","DOIUrl":null,"url":null,"abstract":"<p><p>Early Eocene (∼56-48 Ma) climates are useful to investigate polar climate dynamics in the absence of ice. We explore early Eocene orbital variability of Arctic climate using sediments recovered by the Arctic Coring Expedition (ACEX). High resolution records of lipid biomarkers (GDGTs; 2-kyr) and palynological assemblages (5-kyr) in the ∼4 m interval below Eocene Thermal Maximum 2 (∼54 Ma) show cyclic signals related to ∼20-kyr precession, ∼40-kyr obliquity, and ∼100-kyr eccentricity. Biomarkers indicate obliquity and precession variability representative of sea surface temperature (SST) variations up to ∼1.4 and ∼0.5°C, respectively. Peak SSTs coincide with an elevated supply of pollen and spores and increased marine productivity. This implies an orbital control on precipitation and terrestrial nutrient supply to the Arctic Basin. Assuming that SST maxima correspond to Arctic insolation maxima (precession minima/obliquity maxima), precipitation maxima also correspond to insolation maxima, implying regional hydrological processes as a forcing rather than variations in meridional water transport, contrasting Pleistocene Arctic hydrology. The relative amplitudes of precession and obliquity in the SST record match that of local insolation between spring and fall, corroborating a seasonal GDGT bias. The reconstructed complete orbital imprint refutes a bias to one end of the orbital variability. Eccentricity-related SST variability was ∼0.8°C, ∼2-3 times higher than synchronous variability in the deep ocean, and 3-4 times higher than similar variations in the tropics. This confirms eccentricity-forced global temperature variability and that this had pronounced polar amplification, despite the absence of ice-albedo feedbacks.</p>","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"39 12","pages":"e2024PA004907"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Orbital (Hydro)Climate Variability in the Ice-Free Early Eocene Arctic.\",\"authors\":\"Chris D Fokkema, Henk Brinkhuis, Francien Peterse, Appy Sluijs\",\"doi\":\"10.1029/2024PA004907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early Eocene (∼56-48 Ma) climates are useful to investigate polar climate dynamics in the absence of ice. We explore early Eocene orbital variability of Arctic climate using sediments recovered by the Arctic Coring Expedition (ACEX). High resolution records of lipid biomarkers (GDGTs; 2-kyr) and palynological assemblages (5-kyr) in the ∼4 m interval below Eocene Thermal Maximum 2 (∼54 Ma) show cyclic signals related to ∼20-kyr precession, ∼40-kyr obliquity, and ∼100-kyr eccentricity. Biomarkers indicate obliquity and precession variability representative of sea surface temperature (SST) variations up to ∼1.4 and ∼0.5°C, respectively. Peak SSTs coincide with an elevated supply of pollen and spores and increased marine productivity. This implies an orbital control on precipitation and terrestrial nutrient supply to the Arctic Basin. Assuming that SST maxima correspond to Arctic insolation maxima (precession minima/obliquity maxima), precipitation maxima also correspond to insolation maxima, implying regional hydrological processes as a forcing rather than variations in meridional water transport, contrasting Pleistocene Arctic hydrology. The relative amplitudes of precession and obliquity in the SST record match that of local insolation between spring and fall, corroborating a seasonal GDGT bias. The reconstructed complete orbital imprint refutes a bias to one end of the orbital variability. Eccentricity-related SST variability was ∼0.8°C, ∼2-3 times higher than synchronous variability in the deep ocean, and 3-4 times higher than similar variations in the tropics. This confirms eccentricity-forced global temperature variability and that this had pronounced polar amplification, despite the absence of ice-albedo feedbacks.</p>\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\"39 12\",\"pages\":\"e2024PA004907\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024PA004907\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024PA004907","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

始新世早期(~ 56-48 Ma)气候有助于研究无冰条件下的极地气候动力学。本文利用北极取芯考察(ACEX)回收的沉积物,探讨了始新世早期北极气候的轨道变率。脂质生物标志物(GDGTs)的高分辨率记录;始新世热极大值2 (~ 54 Ma)下~ 4 m区间的孢粉组合(5-kyr)显示与~ 20-kyr岁差、~ 40-kyr倾角和~ 100-kyr偏心率相关的循环信号。生物标志物表明,海表温度(SST)的倾角和岁差变化分别可达~ 1.4和~ 0.5°C。海温的峰值与花粉和孢子供应的增加以及海洋生产力的提高相吻合。这意味着对北极盆地降水和陆地养分供应的轨道控制。假设海温最大值对应于北极日照最大值(旋进最小值/倾角最大值),降水最大值也对应于日照最大值,这意味着区域水文过程是一种强迫,而不是经向水输送的变化,与更新世北极水文形成对比。海温记录中的岁差和倾角的相对振幅与春季和秋季的局部日照相匹配,证实了GDGT的季节性偏差。重建的完整轨道印记驳斥了偏向轨道变异一端的观点。与偏心率相关的海温变率为~ 0.8°C,比深海的同步变率高~ 2-3倍,比热带的类似变率高3-4倍。这证实了偏心率造成的全球温度变化,尽管没有冰反照率反馈,但这种变化有明显的极地放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orbital (Hydro)Climate Variability in the Ice-Free Early Eocene Arctic.

Early Eocene (∼56-48 Ma) climates are useful to investigate polar climate dynamics in the absence of ice. We explore early Eocene orbital variability of Arctic climate using sediments recovered by the Arctic Coring Expedition (ACEX). High resolution records of lipid biomarkers (GDGTs; 2-kyr) and palynological assemblages (5-kyr) in the ∼4 m interval below Eocene Thermal Maximum 2 (∼54 Ma) show cyclic signals related to ∼20-kyr precession, ∼40-kyr obliquity, and ∼100-kyr eccentricity. Biomarkers indicate obliquity and precession variability representative of sea surface temperature (SST) variations up to ∼1.4 and ∼0.5°C, respectively. Peak SSTs coincide with an elevated supply of pollen and spores and increased marine productivity. This implies an orbital control on precipitation and terrestrial nutrient supply to the Arctic Basin. Assuming that SST maxima correspond to Arctic insolation maxima (precession minima/obliquity maxima), precipitation maxima also correspond to insolation maxima, implying regional hydrological processes as a forcing rather than variations in meridional water transport, contrasting Pleistocene Arctic hydrology. The relative amplitudes of precession and obliquity in the SST record match that of local insolation between spring and fall, corroborating a seasonal GDGT bias. The reconstructed complete orbital imprint refutes a bias to one end of the orbital variability. Eccentricity-related SST variability was ∼0.8°C, ∼2-3 times higher than synchronous variability in the deep ocean, and 3-4 times higher than similar variations in the tropics. This confirms eccentricity-forced global temperature variability and that this had pronounced polar amplification, despite the absence of ice-albedo feedbacks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信