Stefano Giampiccolo, Federico Reali, Anna Fochesato, Giovanni Iacca, Luca Marchetti
{"title":"计算生物学中混合神经常微分方程鲁棒参数估计及可辨识性分析。","authors":"Stefano Giampiccolo, Federico Reali, Anna Fochesato, Giovanni Iacca, Luca Marchetti","doi":"10.1038/s41540-024-00460-3","DOIUrl":null,"url":null,"abstract":"<p><p>Parameter estimation is one of the central challenges in computational biology. In this paper, we present an approach to estimate model parameters and assess their identifiability in cases where only partial knowledge of the system structure is available. The partially known model is embedded into a system of hybrid neural ordinary differential equations, with neural networks capturing unknown system components. Integrating neural networks into the model presents two main challenges: global exploration of the mechanistic parameter space during optimization and potential loss of parameter identifiability due to the neural network flexibility. To tackle these challenges, we treat biological parameters as hyperparameters, allowing for global search during hyperparameter tuning. We then conduct a posteriori identifiability analysis, extending a well-established method for mechanistic models. The pipeline performance is evaluated on three test cases designed to replicate real-world conditions, including noisy data and limited system observability.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"139"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604934/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust parameter estimation and identifiability analysis with hybrid neural ordinary differential equations in computational biology.\",\"authors\":\"Stefano Giampiccolo, Federico Reali, Anna Fochesato, Giovanni Iacca, Luca Marchetti\",\"doi\":\"10.1038/s41540-024-00460-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parameter estimation is one of the central challenges in computational biology. In this paper, we present an approach to estimate model parameters and assess their identifiability in cases where only partial knowledge of the system structure is available. The partially known model is embedded into a system of hybrid neural ordinary differential equations, with neural networks capturing unknown system components. Integrating neural networks into the model presents two main challenges: global exploration of the mechanistic parameter space during optimization and potential loss of parameter identifiability due to the neural network flexibility. To tackle these challenges, we treat biological parameters as hyperparameters, allowing for global search during hyperparameter tuning. We then conduct a posteriori identifiability analysis, extending a well-established method for mechanistic models. The pipeline performance is evaluated on three test cases designed to replicate real-world conditions, including noisy data and limited system observability.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"10 1\",\"pages\":\"139\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604934/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00460-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00460-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Robust parameter estimation and identifiability analysis with hybrid neural ordinary differential equations in computational biology.
Parameter estimation is one of the central challenges in computational biology. In this paper, we present an approach to estimate model parameters and assess their identifiability in cases where only partial knowledge of the system structure is available. The partially known model is embedded into a system of hybrid neural ordinary differential equations, with neural networks capturing unknown system components. Integrating neural networks into the model presents two main challenges: global exploration of the mechanistic parameter space during optimization and potential loss of parameter identifiability due to the neural network flexibility. To tackle these challenges, we treat biological parameters as hyperparameters, allowing for global search during hyperparameter tuning. We then conduct a posteriori identifiability analysis, extending a well-established method for mechanistic models. The pipeline performance is evaluated on three test cases designed to replicate real-world conditions, including noisy data and limited system observability.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.