{"title":"神经酰胺合成酶6的糖基化是其活性所必需的。","authors":"Alexandra J Straus, Grace Mavodza, Can E Senkal","doi":"10.1016/j.jlr.2024.100715","DOIUrl":null,"url":null,"abstract":"<p><p>Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100715"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glycosylation of ceramide synthase 6 is required for its activity.\",\"authors\":\"Alexandra J Straus, Grace Mavodza, Can E Senkal\",\"doi\":\"10.1016/j.jlr.2024.100715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100715\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2024.100715\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2024.100715","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
鞘脂在膜结构和细胞信号传导中起着关键作用。神经酰胺合成酶(CerS)产生的神经酰胺参与细胞应激反应和诱导细胞凋亡。神经酰胺和其他鞘脂与内质网应激反应通路的诱导有关。然而,神经酰胺调节内质网应激信号的机制尚不清楚。在这里,我们发现内质网应激诱导剂Brefeldin A (BFA)导致CerS6糖基化增加,并且BFA处理导致内源性神经酰胺积累增加。令我们惊讶的是,我们发现CerS6活性不受bfa诱导的糖基化的影响。相反,我们的数据表明,CerS6在Asn18上的基础糖基化是CerS6活性所必需的。我们使用了一个强大的HCT116 CRISPR-Cas9 CerS6 KO,重新引入野生型CerS6或突变型CerS6,在天冬酰胺-18上对丙氨酸(N18A)进行点突变,从而消除了该残基上的糖基化。我们的数据显示,稳定表达N18A突变体CerS6的细胞在体外和原位的活性明显低于表达WT型CerS6的细胞。此外,N18A突变的缺陷CerS6也存在GSK3β、AKT、JNK和STAT3信号的缺陷。尽管Asn18糖基化是CerS6活性所必需的,但它并不影响内质网应激反应途径。总的来说,我们的研究为通过Asn18的翻译后修饰对CerS6活性的调控提供了重要的见解,并确定了CerS6的糖基化对神经酰胺生成和下游细胞信号通路的重要作用。
Glycosylation of ceramide synthase 6 is required for its activity.
Sphingolipids play key roles in membrane structure and cellular signaling. Ceramide synthase (CerS)-generated ceramide is implicated in cellular stress responses and induction of apoptosis. Ceramide and other sphingolipids are linked to the induction of ER stress response pathways. However, the mechanisms by which ceramide modulates ER stress signaling are not well understood. Here, we show that the ER stress inducer brefeldin A (BFA) causes increased glycosylation of CerS6, and that treatment with BFA causes increased endogenous ceramide accumulation. To our surprise, we found that CerS6 activity was not affected by BFA-induced glycosylation. Instead, our data show that basal glycosylation of CerS6 at Asn18 is required for CerS6 activity. We used a robust HCT116 CRISPR-Cas9 CerS6 KO with reintroduction of either WT CerS6 or a mutant CerS6 with a point mutation at asparagine-18 to an alanine (N18A) which abrogated glycosylation at that residue. Our data show that cells stably expressing the N18A mutant CerS6 had significantly lower activity in vitro and in situ as compared to WT CerS6 expressing cells. Further, the defective CerS6 with N18A mutation also had defects in GSK3β, AKT, JNK, and STAT3 signaling. Despite being required for CerS6 activity, Asn18 glycosylation did not influence ER stress response pathways. Overall, our study provides vital insight into the regulation of CerS6 activity by posttranslational modification at Asn18 and identifies glycosylation of CerS6 to be important for ceramide generation and regulation of downstream cellular signaling pathways.
期刊介绍:
The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.