{"title":"基于松散相互作用层QCM-D度量的单克隆抗体自关联及溶液行为预测","authors":"Yusra Rahman, Siddhanth Hejmady, Reza Nejadnik","doi":"10.1021/acs.molpharmaceut.4c00656","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the increasing availability and success of monoclonal antibodies (mAb), early identification of candidate molecules with desirable developability attributes remains challenging due to self-association and poor solution behavior. Measuring these phenomena experimentally using the available methods is complicated in mAbs development. Quartz crystal microbalance with dissipation monitoring (QCM-D) detects a loosely interacting layer on top of the irreversibly adsorbed layer of molecules, providing information about the mAbs interaction. This work aimed to explore whether the characteristics of this layer can be used as a reliable self-association metric. QCM-D experiments showed a large frequency shift (Δ<i>f</i>) associated with loosely interacting layers for omalizumab but a small or absent layer for tocilizumab. Accordingly, the viscosity of omalizumab increased exponentially at high concentrations compared to tocilizumab. Testing eight mAbs with different self-association behaviors revealed a strong rank order correlation between the mostly used metric of self-association, i.e., diffusion interaction parameter (kD-DLS), and Δ<i>f</i>, indicating Δ<i>f'</i>s potential for predicting mAb solution behavior. The study also highlighted the robustness of the metric to impurities and temperature variations compared to the sensitive kD-DLS. Overall, we demonstrate that the loosely interacting layer provides valuable information about mAb self-association, predicting the colloidal stability and solution behavior in therapeutic development.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"1804-1815"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Self-Association and Solution Behavior of Monoclonal Antibodies Using the QCM-D Metric of Loosely Interacting Layer.\",\"authors\":\"Yusra Rahman, Siddhanth Hejmady, Reza Nejadnik\",\"doi\":\"10.1021/acs.molpharmaceut.4c00656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the increasing availability and success of monoclonal antibodies (mAb), early identification of candidate molecules with desirable developability attributes remains challenging due to self-association and poor solution behavior. Measuring these phenomena experimentally using the available methods is complicated in mAbs development. Quartz crystal microbalance with dissipation monitoring (QCM-D) detects a loosely interacting layer on top of the irreversibly adsorbed layer of molecules, providing information about the mAbs interaction. This work aimed to explore whether the characteristics of this layer can be used as a reliable self-association metric. QCM-D experiments showed a large frequency shift (Δ<i>f</i>) associated with loosely interacting layers for omalizumab but a small or absent layer for tocilizumab. Accordingly, the viscosity of omalizumab increased exponentially at high concentrations compared to tocilizumab. Testing eight mAbs with different self-association behaviors revealed a strong rank order correlation between the mostly used metric of self-association, i.e., diffusion interaction parameter (kD-DLS), and Δ<i>f</i>, indicating Δ<i>f'</i>s potential for predicting mAb solution behavior. The study also highlighted the robustness of the metric to impurities and temperature variations compared to the sensitive kD-DLS. Overall, we demonstrate that the loosely interacting layer provides valuable information about mAb self-association, predicting the colloidal stability and solution behavior in therapeutic development.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"1804-1815\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00656\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00656","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Prediction of Self-Association and Solution Behavior of Monoclonal Antibodies Using the QCM-D Metric of Loosely Interacting Layer.
Despite the increasing availability and success of monoclonal antibodies (mAb), early identification of candidate molecules with desirable developability attributes remains challenging due to self-association and poor solution behavior. Measuring these phenomena experimentally using the available methods is complicated in mAbs development. Quartz crystal microbalance with dissipation monitoring (QCM-D) detects a loosely interacting layer on top of the irreversibly adsorbed layer of molecules, providing information about the mAbs interaction. This work aimed to explore whether the characteristics of this layer can be used as a reliable self-association metric. QCM-D experiments showed a large frequency shift (Δf) associated with loosely interacting layers for omalizumab but a small or absent layer for tocilizumab. Accordingly, the viscosity of omalizumab increased exponentially at high concentrations compared to tocilizumab. Testing eight mAbs with different self-association behaviors revealed a strong rank order correlation between the mostly used metric of self-association, i.e., diffusion interaction parameter (kD-DLS), and Δf, indicating Δf's potential for predicting mAb solution behavior. The study also highlighted the robustness of the metric to impurities and temperature variations compared to the sensitive kD-DLS. Overall, we demonstrate that the loosely interacting layer provides valuable information about mAb self-association, predicting the colloidal stability and solution behavior in therapeutic development.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.