at - u2net:利用注意力增强显著目标检测的语义表示

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Chenzhe Jiang, Banglian Xu, Qinghe Zheng, Zhengtao Li, Leihong Zhang, Zimin Shen, Quan Sun, Dawei Zhang
{"title":"at - u2net:利用注意力增强显著目标检测的语义表示","authors":"Chenzhe Jiang,&nbsp;Banglian Xu,&nbsp;Qinghe Zheng,&nbsp;Zhengtao Li,&nbsp;Leihong Zhang,&nbsp;Zimin Shen,&nbsp;Quan Sun,&nbsp;Dawei Zhang","doi":"10.1049/sil2/6606572","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6606572","citationCount":"0","resultStr":"{\"title\":\"Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection\",\"authors\":\"Chenzhe Jiang,&nbsp;Banglian Xu,&nbsp;Qinghe Zheng,&nbsp;Zhengtao Li,&nbsp;Leihong Zhang,&nbsp;Zimin Shen,&nbsp;Quan Sun,&nbsp;Dawei Zhang\",\"doi\":\"10.1049/sil2/6606572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/sil2/6606572\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6606572\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/sil2/6606572","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

显著性目标检测通过模拟人类视觉感知系统,寻找最具视觉吸引力的目标,已广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。U2Net模型由于其独特的u型残差结构和包含不同尺度特征信息的u型结构骨干,在显著目标检测(SOD)中表现出良好的性能。然而,在u型结构中,从最顶层计算的全局语义信息可能会逐渐受到自上而下路径中大量局部信息稀释的干扰,u型残差结构对图像显著目标区域的特征关注不足,会将冗余特征传递到下一阶段。针对U2Net模型存在的这两大缺陷,本文提出了两方面的改进:一是解决全局语义信息被局部语义信息稀释的问题,二是残差u块(residual U-block, RSU)模块对显著区域和冗余特征关注不足的问题。在u型结构主干网中加入了一个注意门控机制来过滤冗余特征。引入了通道注意(CA)机制来捕获RSU模块中的重要特征。实验结果表明,与U2Net模型相比,本文提出的方法具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection

Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection

Saliency object detection has been widely used in computer vision tasks such as image understanding, semantic segmentation, and target tracking by mimicking the human visual perceptual system to find the most visually appealing object. The U2Net model has shown good performance in salient object detection (SOD) because of its unique U-shaped residual structure and the U-shaped structural backbone incorporating feature information of different scales. However, in the U-shaped structure, the global semantic information computed from the topmost layer may be gradually interfered by the large amount of local information dilution in the top-down path, and the U-shaped residual structure has insufficient attention to the features in the salient target region of the image and will pass redundant features to the next stage. To address these two shortcomings in the U2Net model, this paper proposes improvements in two aspects: to address the situation that the global semantic information is diluted by local semantic information and the residual U-block (RSU) module pays insufficient attention to the salient regions and redundant features. An attentional gating mechanism is added to filter redundant features in the U-structure backbone. A channel attention (CA) mechanism is introduced to capture important features in the RSU module. The experimental results prove that the method proposed in this paper has higher accuracy compared to the U2Net model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信