Shuyue Pang, Song Fu, Xiaotong Yun, Taifeng Jin, Xing Cao, Hengle Du, Xin Ma
{"title":"MAVEN观测到的火星上游磁声波的全球分布","authors":"Shuyue Pang, Song Fu, Xiaotong Yun, Taifeng Jin, Xing Cao, Hengle Du, Xin Ma","doi":"10.1029/2024JE008410","DOIUrl":null,"url":null,"abstract":"<p>Utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) observations from October 2014 to May 2023, we perform a detailed survey of magnetosonic waves generated in the solar wind (refer to as upstream MS waves), with frequencies near the proton gyrofrequency in the solar wind environment. The distribution of the solar wind-generated MS waves has been carefully investigated, including in the solar wind and in the Martian magnetosphere by propagation. The results show that these MS waves are widely distributed below the Martian bow shock but are more concentrated below the magnetic pileup boundary, particularly in the subsolar region. The waves possess higher occurrence rates on the dayside with larger amplitudes; the occurrence rates also show dusk-side-preferred asymmetry. The Martian crustal magnetic field can prevent MS waves from penetrating into lower altitudes, while higher solar dynamic pressure benefits their penetration. The wave amplitudes exhibit a weak positive correlation with the solar wind dynamic pressure. These obtained global distribution features of Martian upstream MS waves observed by MAVEN are valuable to improve current understanding of the dynamic variations of Martian charged particles and the underlying contribution of wave-particle interactions driven by MS waves.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Distribution of Martian Upstream Magnetosonic Waves Observed by MAVEN\",\"authors\":\"Shuyue Pang, Song Fu, Xiaotong Yun, Taifeng Jin, Xing Cao, Hengle Du, Xin Ma\",\"doi\":\"10.1029/2024JE008410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) observations from October 2014 to May 2023, we perform a detailed survey of magnetosonic waves generated in the solar wind (refer to as upstream MS waves), with frequencies near the proton gyrofrequency in the solar wind environment. The distribution of the solar wind-generated MS waves has been carefully investigated, including in the solar wind and in the Martian magnetosphere by propagation. The results show that these MS waves are widely distributed below the Martian bow shock but are more concentrated below the magnetic pileup boundary, particularly in the subsolar region. The waves possess higher occurrence rates on the dayside with larger amplitudes; the occurrence rates also show dusk-side-preferred asymmetry. The Martian crustal magnetic field can prevent MS waves from penetrating into lower altitudes, while higher solar dynamic pressure benefits their penetration. The wave amplitudes exhibit a weak positive correlation with the solar wind dynamic pressure. These obtained global distribution features of Martian upstream MS waves observed by MAVEN are valuable to improve current understanding of the dynamic variations of Martian charged particles and the underlying contribution of wave-particle interactions driven by MS waves.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008410\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008410","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Global Distribution of Martian Upstream Magnetosonic Waves Observed by MAVEN
Utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) observations from October 2014 to May 2023, we perform a detailed survey of magnetosonic waves generated in the solar wind (refer to as upstream MS waves), with frequencies near the proton gyrofrequency in the solar wind environment. The distribution of the solar wind-generated MS waves has been carefully investigated, including in the solar wind and in the Martian magnetosphere by propagation. The results show that these MS waves are widely distributed below the Martian bow shock but are more concentrated below the magnetic pileup boundary, particularly in the subsolar region. The waves possess higher occurrence rates on the dayside with larger amplitudes; the occurrence rates also show dusk-side-preferred asymmetry. The Martian crustal magnetic field can prevent MS waves from penetrating into lower altitudes, while higher solar dynamic pressure benefits their penetration. The wave amplitudes exhibit a weak positive correlation with the solar wind dynamic pressure. These obtained global distribution features of Martian upstream MS waves observed by MAVEN are valuable to improve current understanding of the dynamic variations of Martian charged particles and the underlying contribution of wave-particle interactions driven by MS waves.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.