基于增强双粒度学习的因果推理驱动的药物推荐

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shunpan Liang , Xiang Li , Shi Mu , Chen Li , Yu Lei , Yulei Hou , Tengfei Ma
{"title":"基于增强双粒度学习的因果推理驱动的药物推荐","authors":"Shunpan Liang ,&nbsp;Xiang Li ,&nbsp;Shi Mu ,&nbsp;Chen Li ,&nbsp;Yu Lei ,&nbsp;Yulei Hou ,&nbsp;Tengfei Ma","doi":"10.1016/j.knosys.2024.112685","DOIUrl":null,"url":null,"abstract":"<div><div>Medication recommendation aims to integrate patients’ long-term health records to provide accurate and safe medication combinations for specific health states. Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications, resulting in biased recommendations. Additionally, in medication representation learning, the relationships between information at different granularities of medications—coarse-grained (medication itself) and fine-grained (molecular level)—are not effectively integrated, leading to biases in representation learning. To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the relationships between diseases/procedures and medications, thereby enhancing the rationality and interpretability of recommendations. By integrating coarse-grained medication effects with fine-grained molecular structure information, CIDGMed provides a comprehensive representation of medications. Additionally, we employ a bias correction model during the prediction phase to further refine recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency. Additionally, we demonstrate the rationale of CIDGMed through a case study.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112685"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning\",\"authors\":\"Shunpan Liang ,&nbsp;Xiang Li ,&nbsp;Shi Mu ,&nbsp;Chen Li ,&nbsp;Yu Lei ,&nbsp;Yulei Hou ,&nbsp;Tengfei Ma\",\"doi\":\"10.1016/j.knosys.2024.112685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Medication recommendation aims to integrate patients’ long-term health records to provide accurate and safe medication combinations for specific health states. Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications, resulting in biased recommendations. Additionally, in medication representation learning, the relationships between information at different granularities of medications—coarse-grained (medication itself) and fine-grained (molecular level)—are not effectively integrated, leading to biases in representation learning. To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the relationships between diseases/procedures and medications, thereby enhancing the rationality and interpretability of recommendations. By integrating coarse-grained medication effects with fine-grained molecular structure information, CIDGMed provides a comprehensive representation of medications. Additionally, we employ a bias correction model during the prediction phase to further refine recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency. Additionally, we demonstrate the rationale of CIDGMed through a case study.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"309 \",\"pages\":\"Article 112685\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124013194\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013194","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

药物推荐旨在整合患者的长期健康记录,为特定健康状态提供准确、安全的药物组合。现有的方法往往不能深入探讨疾病/程序和药物之间的真正因果关系,导致有偏见的建议。此外,在药物表征学习中,不同粒度的药物信息之间的关系——粗粒度(药物本身)和细粒度(分子水平)——没有有效地整合,导致表征学习中的偏差。为了解决这些限制,我们提出了因果推理驱动的双粒度药物推荐方法(CIDGMed)。我们的方法利用因果推理来揭示疾病/程序和药物之间的关系,从而提高建议的合理性和可解释性。通过将粗粒度的药物效应与细粒度的分子结构信息相结合,CIDGMed提供了药物的综合表征。此外,我们在预测阶段采用偏差校正模型来进一步完善建议,确保准确性和安全性。通过大量的实验,CIDGMed在多个指标上都明显优于当前最先进的模型,准确率提高了2.54%,副作用减少了3.65%,时间效率提高了39.42%。此外,我们通过一个案例研究证明了CIDGMed的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CIDGMed: Causal Inference-Driven Medication Recommendation with Enhanced Dual-Granularity Learning
Medication recommendation aims to integrate patients’ long-term health records to provide accurate and safe medication combinations for specific health states. Existing methods often fail to deeply explore the true causal relationships between diseases/procedures and medications, resulting in biased recommendations. Additionally, in medication representation learning, the relationships between information at different granularities of medications—coarse-grained (medication itself) and fine-grained (molecular level)—are not effectively integrated, leading to biases in representation learning. To address these limitations, we propose the Causal Inference-driven Dual-Granularity Medication Recommendation method (CIDGMed). Our approach leverages causal inference to uncover the relationships between diseases/procedures and medications, thereby enhancing the rationality and interpretability of recommendations. By integrating coarse-grained medication effects with fine-grained molecular structure information, CIDGMed provides a comprehensive representation of medications. Additionally, we employ a bias correction model during the prediction phase to further refine recommendations, ensuring both accuracy and safety. Through extensive experiments, CIDGMed significantly outperforms current state-of-the-art models across multiple metrics, achieving a 2.54% increase in accuracy, a 3.65% reduction in side effects, and a 39.42% improvement in time efficiency. Additionally, we demonstrate the rationale of CIDGMed through a case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信