Hengdong Zhu , Yingshan Shen , Choujun Zhan , Fu Lee Wang , Heng Weng , Tianyong Hao
{"title":"基于双特征正则化和拉普拉斯秩约束的基于图的聚类方法","authors":"Hengdong Zhu , Yingshan Shen , Choujun Zhan , Fu Lee Wang , Heng Weng , Tianyong Hao","doi":"10.1016/j.knosys.2024.112738","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of graph-based clustering is commonly limited by two-stage processing (Constructing and dividing similarity graph) and the quality of similar graphs. To this end, we propose a new graph-based clustering method with dual-feature regularization and Laplacian rank constraint. Specifically, our method reveals the clustering structure and unifies the two-stage process. It imposes a Laplacian rank constraint on the similarity graph to ensure that it has <span><math><mi>C</mi></math></span> connected components. In addition, a method based on dual-feature regularization is designed to capture local data feature information from both feature extraction and adaptive regression, and is applied to an accurate distance metric learning. A reweighting optimization is integrated to learn a high-quality robust similarity graph. Comprehensive experiments on Ecoli, Yale and Yeast datasets show that our method outperforms the existing graph-based clustering methods with an average improvement of about 4%, 5% and 7% on the evaluation metrics ACC, NMI and RI, respectively.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"309 ","pages":"Article 112738"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new graph-based clustering method with dual-feature regularization and Laplacian rank constraint\",\"authors\":\"Hengdong Zhu , Yingshan Shen , Choujun Zhan , Fu Lee Wang , Heng Weng , Tianyong Hao\",\"doi\":\"10.1016/j.knosys.2024.112738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The performance of graph-based clustering is commonly limited by two-stage processing (Constructing and dividing similarity graph) and the quality of similar graphs. To this end, we propose a new graph-based clustering method with dual-feature regularization and Laplacian rank constraint. Specifically, our method reveals the clustering structure and unifies the two-stage process. It imposes a Laplacian rank constraint on the similarity graph to ensure that it has <span><math><mi>C</mi></math></span> connected components. In addition, a method based on dual-feature regularization is designed to capture local data feature information from both feature extraction and adaptive regression, and is applied to an accurate distance metric learning. A reweighting optimization is integrated to learn a high-quality robust similarity graph. Comprehensive experiments on Ecoli, Yale and Yeast datasets show that our method outperforms the existing graph-based clustering methods with an average improvement of about 4%, 5% and 7% on the evaluation metrics ACC, NMI and RI, respectively.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"309 \",\"pages\":\"Article 112738\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705124013728\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705124013728","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A new graph-based clustering method with dual-feature regularization and Laplacian rank constraint
The performance of graph-based clustering is commonly limited by two-stage processing (Constructing and dividing similarity graph) and the quality of similar graphs. To this end, we propose a new graph-based clustering method with dual-feature regularization and Laplacian rank constraint. Specifically, our method reveals the clustering structure and unifies the two-stage process. It imposes a Laplacian rank constraint on the similarity graph to ensure that it has connected components. In addition, a method based on dual-feature regularization is designed to capture local data feature information from both feature extraction and adaptive regression, and is applied to an accurate distance metric learning. A reweighting optimization is integrated to learn a high-quality robust similarity graph. Comprehensive experiments on Ecoli, Yale and Yeast datasets show that our method outperforms the existing graph-based clustering methods with an average improvement of about 4%, 5% and 7% on the evaluation metrics ACC, NMI and RI, respectively.
期刊介绍:
Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.