二手太阳能光伏系统的随机可持续闭环供应链网络:启发式比较与实际案例研究

Peiman Ghasemi , Syed Mithun Ali , Milad Abolghasemian , Reza Ahmadi Malakoot , Adel Pourghader Chobar
{"title":"二手太阳能光伏系统的随机可持续闭环供应链网络:启发式比较与实际案例研究","authors":"Peiman Ghasemi ,&nbsp;Syed Mithun Ali ,&nbsp;Milad Abolghasemian ,&nbsp;Reza Ahmadi Malakoot ,&nbsp;Adel Pourghader Chobar","doi":"10.1016/j.susoc.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a novel approach to setting up a sustainable Closed-Loop Supply Chain (CLSC) network for used solar photovoltaic (PV) systems, addressing end-of-life product waste from solar panel installations and manufacturing centers. The model accounts for uncertainties in PV systems and aims to efficiently collect, refurbish, and recycle used solar PV systems, promoting a circular and environmentally responsible waste management strategy. The supply chain network comprises vendors, collection centers, hybrid centers, distribution centers, and manufacturing centers, with objectives to maximize total profit, minimize environmental risk, and maximize service levels by demonstrating the profitable reuse of used solar photovoltaic systems by manufacturers. The epsilon-constraint method is utilized to handle the model's multi-objectiveness and identify Pareto optimal solutions. A case study in Iran is conducted to validate the methodology's performance, comparing results obtained from three meta-heuristic methods: Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Gray Wolf Optimization (MOGWO). The average error rates are 0.0358 for MOGWO, 0.1248 for MOPSO, and 0.2066 for NSGA-II. Sensitivity analysis highlights the significant impact of demand variations on all objective functions. Lastly, the numerical results are discussed to provide managerial insights for informed decision-making.</div></div>","PeriodicalId":101201,"journal":{"name":"Sustainable Operations and Computers","volume":"6 ","pages":"Pages 15-33"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic sustainable Closed-Loop Supply Chain Networks for used solar photovoltaic systems: Meta-heuristic comparison and real case study\",\"authors\":\"Peiman Ghasemi ,&nbsp;Syed Mithun Ali ,&nbsp;Milad Abolghasemian ,&nbsp;Reza Ahmadi Malakoot ,&nbsp;Adel Pourghader Chobar\",\"doi\":\"10.1016/j.susoc.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research presents a novel approach to setting up a sustainable Closed-Loop Supply Chain (CLSC) network for used solar photovoltaic (PV) systems, addressing end-of-life product waste from solar panel installations and manufacturing centers. The model accounts for uncertainties in PV systems and aims to efficiently collect, refurbish, and recycle used solar PV systems, promoting a circular and environmentally responsible waste management strategy. The supply chain network comprises vendors, collection centers, hybrid centers, distribution centers, and manufacturing centers, with objectives to maximize total profit, minimize environmental risk, and maximize service levels by demonstrating the profitable reuse of used solar photovoltaic systems by manufacturers. The epsilon-constraint method is utilized to handle the model's multi-objectiveness and identify Pareto optimal solutions. A case study in Iran is conducted to validate the methodology's performance, comparing results obtained from three meta-heuristic methods: Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Gray Wolf Optimization (MOGWO). The average error rates are 0.0358 for MOGWO, 0.1248 for MOPSO, and 0.2066 for NSGA-II. Sensitivity analysis highlights the significant impact of demand variations on all objective functions. Lastly, the numerical results are discussed to provide managerial insights for informed decision-making.</div></div>\",\"PeriodicalId\":101201,\"journal\":{\"name\":\"Sustainable Operations and Computers\",\"volume\":\"6 \",\"pages\":\"Pages 15-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Operations and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666412724000205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Operations and Computers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666412724000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种为废旧太阳能光伏(PV)系统建立可持续闭环供应链(CLSC)网络的新方法,解决了太阳能电池板安装和制造中心的报废产品浪费问题。该模型考虑了光伏系统的不确定性,旨在有效地收集、翻新和回收废旧太阳能光伏系统,促进循环和对环境负责的废物管理战略。供应链网络由供应商、收集中心、混合中心、配送中心和制造中心组成,其目标是通过展示制造商对二手太阳能光伏系统的可盈利再利用,实现总利润最大化、环境风险最小化和服务水平最大化。利用约束方法处理模型的多目标性,识别Pareto最优解。通过对三种元启发式方法(non - dominant Sorting Genetic Algorithm-II, NSGA-II)、多目标粒子群优化(multiobjective Particle Swarm Optimization, MOPSO)和多目标灰狼优化(multiobjective grey Wolf Optimization, MOGWO)的结果进行比较,验证了该方法的有效性。MOGWO的平均错误率为0.0358,MOPSO为0.1248,NSGA-II为0.2066。敏感性分析强调了需求变化对所有目标函数的显著影响。最后,讨论了数值结果,为知情决策提供管理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic sustainable Closed-Loop Supply Chain Networks for used solar photovoltaic systems: Meta-heuristic comparison and real case study
This research presents a novel approach to setting up a sustainable Closed-Loop Supply Chain (CLSC) network for used solar photovoltaic (PV) systems, addressing end-of-life product waste from solar panel installations and manufacturing centers. The model accounts for uncertainties in PV systems and aims to efficiently collect, refurbish, and recycle used solar PV systems, promoting a circular and environmentally responsible waste management strategy. The supply chain network comprises vendors, collection centers, hybrid centers, distribution centers, and manufacturing centers, with objectives to maximize total profit, minimize environmental risk, and maximize service levels by demonstrating the profitable reuse of used solar photovoltaic systems by manufacturers. The epsilon-constraint method is utilized to handle the model's multi-objectiveness and identify Pareto optimal solutions. A case study in Iran is conducted to validate the methodology's performance, comparing results obtained from three meta-heuristic methods: Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-Objective Gray Wolf Optimization (MOGWO). The average error rates are 0.0358 for MOGWO, 0.1248 for MOPSO, and 0.2066 for NSGA-II. Sensitivity analysis highlights the significant impact of demand variations on all objective functions. Lastly, the numerical results are discussed to provide managerial insights for informed decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信