{"title":"利用旁路双喉喷管技术研究矢量推力对飞机机动性的影响","authors":"Jinglei Xu , Rui Gu , Shuai Huang","doi":"10.1016/j.ast.2024.109765","DOIUrl":null,"url":null,"abstract":"<div><div>With the progressive maturation of fluidic Thrust Vectoring technology, future advanced fighter aircraft are poised to adopt the new nozzle with higher vector efficiency. This research paper introduces an innovative analytical framework that seamlessly integrates nonlinear aircraft dynamics with thrust vectoring nozzles. An F-16 aircraft model and a bypass dual throat nozzle (BDTN) are introduced to analyze the impact of thrust vectoring on flight performance. Key findings indicate that thrust vectoring nozzles significantly enhance aircraft climb performance, resulting in a notable 28.1% increase in climb rate. Furthermore, the flow losses associated with these nozzles have minimal influence on the aircraft's kinematic state, with a mere 4.2% impact on mechanical energy within 10 s under a 20% thrust loss scenario. For thrust-vectored models performing maneuvers at a given pitch rate, a critical velocity threshold emerges. Above or equal to this threshold, thrust vectoring augments aircraft maneuverability; however, velocities below this threshold may lead to airspeed loss and increased risk of stall, emphasizing the delicate balance necessary for optimal performance. Lastly, the study reveals that during complex maneuvers, thrust vectoring enhances the aircraft's sideslip capability, further underlining its significance in enhancing overall flight performance.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"156 ","pages":"Article 109765"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the impact of vector thrust on aircraft maneuverability utilizing bypass dual throat nozzle technology\",\"authors\":\"Jinglei Xu , Rui Gu , Shuai Huang\",\"doi\":\"10.1016/j.ast.2024.109765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the progressive maturation of fluidic Thrust Vectoring technology, future advanced fighter aircraft are poised to adopt the new nozzle with higher vector efficiency. This research paper introduces an innovative analytical framework that seamlessly integrates nonlinear aircraft dynamics with thrust vectoring nozzles. An F-16 aircraft model and a bypass dual throat nozzle (BDTN) are introduced to analyze the impact of thrust vectoring on flight performance. Key findings indicate that thrust vectoring nozzles significantly enhance aircraft climb performance, resulting in a notable 28.1% increase in climb rate. Furthermore, the flow losses associated with these nozzles have minimal influence on the aircraft's kinematic state, with a mere 4.2% impact on mechanical energy within 10 s under a 20% thrust loss scenario. For thrust-vectored models performing maneuvers at a given pitch rate, a critical velocity threshold emerges. Above or equal to this threshold, thrust vectoring augments aircraft maneuverability; however, velocities below this threshold may lead to airspeed loss and increased risk of stall, emphasizing the delicate balance necessary for optimal performance. Lastly, the study reveals that during complex maneuvers, thrust vectoring enhances the aircraft's sideslip capability, further underlining its significance in enhancing overall flight performance.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"156 \",\"pages\":\"Article 109765\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008940\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008940","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Exploring the impact of vector thrust on aircraft maneuverability utilizing bypass dual throat nozzle technology
With the progressive maturation of fluidic Thrust Vectoring technology, future advanced fighter aircraft are poised to adopt the new nozzle with higher vector efficiency. This research paper introduces an innovative analytical framework that seamlessly integrates nonlinear aircraft dynamics with thrust vectoring nozzles. An F-16 aircraft model and a bypass dual throat nozzle (BDTN) are introduced to analyze the impact of thrust vectoring on flight performance. Key findings indicate that thrust vectoring nozzles significantly enhance aircraft climb performance, resulting in a notable 28.1% increase in climb rate. Furthermore, the flow losses associated with these nozzles have minimal influence on the aircraft's kinematic state, with a mere 4.2% impact on mechanical energy within 10 s under a 20% thrust loss scenario. For thrust-vectored models performing maneuvers at a given pitch rate, a critical velocity threshold emerges. Above or equal to this threshold, thrust vectoring augments aircraft maneuverability; however, velocities below this threshold may lead to airspeed loss and increased risk of stall, emphasizing the delicate balance necessary for optimal performance. Lastly, the study reveals that during complex maneuvers, thrust vectoring enhances the aircraft's sideslip capability, further underlining its significance in enhancing overall flight performance.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.